http://poj.org/problem?id=1811

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <ctime>
using namespace std;
typedef __int64 LL;
const int times = ;
LL minf, n; LL random(LL n){
return (double)rand() / RAND_MAX * n + 0.5;
} LL multi(LL a, LL b, LL mod){
a %= mod, b %= mod;
LL ans = ;
while(b){
if(b & ) ans += a, ans %= mod;
b >>= ;
a <<= ;
a %= mod;
}
return ans;
} LL power(LL a, LL p, LL mod){
a %= mod;
LL ans = ;
while(p){
if(p & ) ans = multi(ans, a, mod);
p >>= ;
a = multi(a, a, mod);
}
return ans;
} LL gcd(LL a, LL b){
if(!b) return a;
return gcd(b, a % b);
} bool witness(LL a, LL n){
LL u = n - ;
while(!(u & )) u >>= ;
LL t = power(a, u, n);
while(u != n - && t != && t != n - ){
t = multi(t, t, n);
u <<= ;
}
return t == n - || u & ;
} bool miller_rabin(LL n){
if(n == ) return ;
if(n < || !(n & )) return ;
//test for odd numbers larger than 2
for(int i = ; i < times; i++){
LL p = random(n - ) + ;
if(!witness(p, n)) return ;
}
return ;
} LL pollard_rho(LL n, LL t){
LL x = random(n - ) + ;
LL y = x;
LL i = , k = , d;
while(){
++i;
x = (multi(x, x, n) + t) % n;
d = gcd(y - x, n);
if( < d && d < n) return d;
if(x == y) return n;
if(i == k){
y = x;
k <<= ;
}
}
} void fact(LL n, LL t){
if(n == ) return;
if(miller_rabin(n)){
minf = min(minf, n);
return;
}
LL p = n;
while(p >= n) p = pollard_rho(p, t--);
fact(p, t);
fact(n / p, t);
} void solve(){
//if n is prime
if(miller_rabin(n)){
puts("Prime");
return;
}
//try to factorize n
//initialize the minimum non trival factor of n
minf = n;
fact(n, );
printf("%I64d\n", minf);
} int main(){
//freopen("in.txt", "r", stdin);
int T;
scanf("%d", &T);
while(T--) scanf("%I64d", &n), solve();
return ;
}

poj1811 Prime Test的更多相关文章

  1. POJ1811 Prime Test(miller素数判断&&pollar_rho大数分解)

    http://blog.csdn.net/shiyuankongbu/article/details/9202373 发现自己原来的那份模板是有问题的,而且竟然找不出是哪里的问题,所以就用了上面的链接 ...

  2. [poj1811]Prime Test(Pollard-Rho大整数分解)

    问题描述:素性测试兼质因子分解 解题关键:pollard-rho质因数分解,在RSA的破译中也起到了很大的作用 期望复杂度:$O({n^{\frac{1}{4}}})$ #include<cst ...

  3. 【POJ1811】【miller_rabin + pollard rho + 快速乘】Prime Test

    Description Given a big integer number, you are required to find out whether it's a prime number. In ...

  4. 【POJ1811】Prime Test

    [题目大意] 若n是素数,输出“Prime”,否则输出n的最小素因子,(n<=2^54) [题解] 和bzoj3667差不多,知识这道题没那么坑. 直接上Pollord_Rho和Rabin_Mi ...

  5. Java 素数 prime numbers-LeetCode 204

    Description: Count the number of prime numbers less than a non-negative number, n click to show more ...

  6. Prime Generator

    Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate ...

  7. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  8. UVa 524 Prime Ring Problem(回溯法)

    传送门 Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbe ...

  9. Sicily 1444: Prime Path(BFS)

    题意为给出两个四位素数A.B,每次只能对A的某一位数字进行修改,使它成为另一个四位的素数,问最少经过多少操作,能使A变到B.可以直接进行BFS搜索 #include<bits/stdc++.h& ...

随机推荐

  1. PAT 解题报告 1048. Find Coins (25)

    1048. Find Coins (25) Eva loves to collect coins from all over the universe, including some other pl ...

  2. Leetcode: Combination Sum IV && Summary: The Key to Solve DP

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  3. php面向对象(OOP)编程完全教程

    摘自:http://www.php-note.com/article/detail/41 面向对象编程(OOP)是我们编程的一项基本技能,PHP5对OOP提供了良好的支持.如何使用OOP的思想来进行P ...

  4. [Reprint]c++中typename和class的区别介绍

    在c++Template中,很多地方都用到了typename与class这两个关键字,而且好像可以替换,是不是这两个关键字完全一样呢?   相信学习C++的人对class这个关键字都非常明白,clas ...

  5. [转] linux中常用的命令

    系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 - (SMBIOS ...

  6. C++新手之培养良好的编程风格

    内功深厚的武林高手出招往往平淡无奇.同理,编程高手也不会用奇门怪招写程序.良好的编程风格是产生高质量程序的前提. 下面以C++为例,来给大家介绍. 一. 命名约定 有不少人编程时用拼音给函数或变量命名 ...

  7. JSon_零基础_005_将po(bean)对象转换为JSon格式的对象字符串,返回给界面

    将po(bean)对象转换为JSon格式的对象字符串,返回给界面 导入jar包: 编写po(bean)类: package com.west.webcourse.po; /** * 第01步:编写be ...

  8. spark history-server的使用

    为什么需要historyServer? 在运行Spark Application的时候,Spark会提供一个WEBUI列出应用程序的运行时信息:但该WEBUI随着Application的完成(成功/失 ...

  9. 关于用php插入汉字到oracle中出现不乱码问题

    $conn = oci_pconnect("IBADMINTON", "5206576360", $db,'utf8'); 在代码中加入‘utf8’即可:   ...

  10. paper 92:图像视觉博客资源2之MIT斯坦福CMU

    收录的图像视觉(也包含机器学习等)领域的博客资源的第二部分,包含:美国MIT.斯坦福.CMU三所高校 1)这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享 ...