题目链接:http://poj.org/problem?id=3237

You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one of the following forms:

CHANGE i v Change the weight of the ith edge to v
NEGATE a b Negate the weight of every edge on the path from a to b
QUERY a b Find the maximum weight of edges on the path from a to b

题意描述:一棵树有n个节点和n-1条边,每条边有一个权值。现在给出三种操作:

CHANGE I V:把第i条边的值改为v

NEGATE A B:把A到B的路径上的所有边的值取反(正为负,负改为正)

QUERY A B:询问A到B的路径上的边权值的最大值。

算法分析:树链剖分解决。把边权值移到节点上面,由于操作上有对值取反,所有我们不止要运用线段树统计区间最大值maxnum,还要统计区间最小值minnum,这样在取反操作后,maxnum=-maxnum,minnum=-minnum,再把两个值交换:swap(maxnum,minnum)即可。

说明:阅读了一些大牛的代码,感觉线段树部分还是结构体比数组方便一些,树链剖分刚开始学,代码和解题思想很多是借鉴大牛们的,只是把代码风格改成自己的了,相信只有不断学习和解题才会对树链剖分有一定理解的。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<vector>
#define inf 0x7fffffff
using namespace std;
const int maxn=+; struct Edge
{
int to,next;
}edge[maxn*];
int head[maxn],edgenum;
int top[maxn];//top[v]表示v所在的重链的顶端节点
int fa[maxn]; //父亲节点
int dep[maxn];//深度
int siz[maxn];//siz[v]表示以v为根的子树的节点数
int tid[maxn];//tid[v]表示v与其父亲节点的连边在线段树中的位置
int tid2[maxn];//和tid数组相反
int son[maxn];//重儿子
int pos;
void init()
{
edgenum=;
memset(head,-,sizeof(head));
pos=;
memset(son,-,sizeof(son));
}
void addedge(int u,int v)
{
edge[edgenum].to=v ;edge[edgenum].next=head[u];
head[u]=edgenum++; edge[edgenum].to=u ;edge[edgenum].next=head[v];
head[v]=edgenum++;
} void dfs1(int u,int pre,int d) //第一遍dfs求出fa,dep,siz,son
{
dep[u]=d;
fa[u]=pre;
siz[u]=;
for (int i=head[u] ;i != - ;i=edge[i].next)
{
int v=edge[i].to;
if (v != pre)
{
dfs1(v,u,d+);
siz[u] += siz[v];
if (son[u] == - || siz[v]>siz[son[u]])
son[u]=v;
}
}
}
void dfs2(int u,int tp) //第二遍dfs求出top和tid
{
top[u]=tp;
tid[u]= ++pos;
tid2[pos]=u;
if (son[u] == -) return;
dfs2(son[u],tp);
for (int i=head[u] ;i != - ;i=edge[i].next)
{
int v=edge[i].to;
if (v != son[u] && v != fa[u])
dfs2(v,v);
}
} //线段树
struct node
{
int l,r;
int Max;
int Min;
int ne;
}segTree[maxn*]; void build(int l,int r,int rt)
{
segTree[rt].l=l;
segTree[rt].r=r;
segTree[rt].Max=;
segTree[rt].Min=;
segTree[rt].ne=;
if (l==r) return ;
int mid=(l+r)/;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
}
void PushUP(int rt)
{
segTree[rt].Max = max(segTree[rt<<].Max,segTree[rt<<|].Max);
segTree[rt].Min = min(segTree[rt<<].Min,segTree[rt<<|].Min);
}
void PushDown(int rt)
{
if (segTree[rt].l == segTree[rt].r) return ;
if (segTree[rt].ne)
{
segTree[rt<<].Max = -segTree[rt<<].Max;
segTree[rt<<].Min = -segTree[rt<<].Min;
swap(segTree[rt<<].Min,segTree[rt<<].Max);
segTree[rt<<|].Max = -segTree[rt<<|].Max;
segTree[rt<<|].Min = -segTree[rt<<|].Min;
swap(segTree[rt<<|].Max,segTree[rt<<|].Min);
segTree[rt<<].ne ^= ;
segTree[rt<<|].ne ^= ;
segTree[rt].ne = ;
}
} void update(int k,int val,int rt) // 更新线段树的第k个值为val
{
if(segTree[rt].l == k && segTree[rt].r == k)
{
segTree[rt].Max = val;
segTree[rt].Min = val;
segTree[rt].ne = ;
return;
}
PushDown(rt);
int mid = (segTree[rt].l + segTree[rt].r)/;
if(k <= mid)update(k,val,rt<<);
else update(k,val,(rt<<)|);
PushUP(rt);
}
void ne_update(int l,int r,int rt) // 更新线段树的区间[l,r]取反
{
if (segTree[rt].l == l && segTree[rt].r == r)
{
segTree[rt].Max = -segTree[rt].Max;
segTree[rt].Min = -segTree[rt].Min;
swap(segTree[rt].Max,segTree[rt].Min);
segTree[rt].ne ^= ;
return;
}
PushDown(rt);
int mid = (segTree[rt].l + segTree[rt].r)/;
if (r <= mid) ne_update(l,r,rt<<);
else if (l > mid) ne_update(l,r,(rt<<)|);
else
{
ne_update(l,mid,rt<<);
ne_update(mid+,r,(rt<<)|);
}
PushUP(rt);
}
int query(int l,int r,int rt) //查询线段树中[l,r] 的最大值
{
if (segTree[rt].l == l && segTree[rt].r == r)
return segTree[rt].Max;
PushDown(rt);
int mid = (segTree[rt].l+segTree[rt].r)>>;
if (r <= mid) return query(l,r,rt<<);
else if (l > mid) return query(l,r,(rt<<)|);
else return max(query(l,mid,rt<<),query(mid+,r,(rt<<)|));
PushUP(rt);
}
int findmax(int u,int v)//查询u->v边的最大值
{
int f1 = top[u], f2 = top[v];
int tmp = -;
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2);
swap(u,v);
}
tmp = max(tmp,query(tid[f1],tid[u],));
u = fa[f1]; f1 = top[u];
}
if(u == v)return tmp;
if(dep[u] > dep[v]) swap(u,v);
return max(tmp,query(tid[son[u]],tid[v],));
} void Negate(int u,int v)
{
int f1=top[u],f2=top[v];
while (f1 != f2)
{
if (dep[f1]<dep[f2])
{
swap(f1,f2);
swap(u,v);
}
ne_update(tid[f1],tid[u],);
u=fa[f1] ;f1=top[u];
}
if (u==v) return;
if (dep[u]>dep[v]) swap(u,v);
return ne_update(tid[son[u] ],tid[v],);
} int e[maxn][];
int main()
{
int T;
int n;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d",&n);
for(int i = ;i < n-;i++)
{
scanf("%d%d%d",&e[i][],&e[i][],&e[i][]);
addedge(e[i][],e[i][]);
}
dfs1(,,);
dfs2(,);
build(,n,);
for (int i = ;i < n-; i++)
{
if (dep[e[i][]]>dep[e[i][]])
swap(e[i][],e[i][]);
update(tid[e[i][]],e[i][],);
}
char op[];
int u,v;
while (scanf("%s",op) == )
{
if (op[] == 'D') break;
scanf("%d%d",&u,&v);
if (op[]=='Q')
printf("%d\n",findmax(u,v));//查询u->v路径上边权的最大值
else if (op[]=='C')
update(tid[e[u-][]],v,);//改变第u条边的值为v
else Negate(u,v);
}
}
return ;
}

poj 3237 Tree 树链剖分的更多相关文章

  1. POJ 3237 Tree (树链剖分 路径剖分 线段树的lazy标记)

    题目链接:http://poj.org/problem?id=3237 一棵有边权的树,有3种操作. 树链剖分+线段树lazy标记.lazy为0表示没更新区间或者区间更新了2的倍数次,1表示为更新,每 ...

  2. POJ 3237.Tree -树链剖分(边权)(边值更新、路径边权最值、区间标记)贴个板子备忘

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 12247   Accepted: 3151 Descriptio ...

  3. poj 3237 Tree 树链剖分+线段树

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  4. poj 3237 Tree(树链拆分)

    题目链接:poj 3237 Tree 题目大意:给定一棵树,三种操作: CHANGE i v:将i节点权值变为v NEGATE a b:将ab路径上全部节点的权值变为相反数 QUERY a b:查询a ...

  5. POJ3237 Tree 树链剖分 边权

    POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...

  6. Hdu 5274 Dylans loves tree (树链剖分模板)

    Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...

  7. Query on a tree——树链剖分整理

    树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...

  8. 【BZOJ-4353】Play with tree 树链剖分

    4353: Play with tree Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 31  Solved: 19[Submit][Status][ ...

  9. SPOJ Query on a tree 树链剖分 水题

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

随机推荐

  1. HTML5 对于手机页面长按会粘贴复制的禁用 (解决方案)

    解决方案: 直接在CSS 文件中添加下面的代码,就可以实现了在手机端禁止粘贴复制的功能: *{    -webkit-touch-callout:none;  /*系统默认菜单被禁用*/    -we ...

  2. html5面向对象做一个贪吃蛇小游戏

    canvas加面向对象方式的贪吃蛇 2016-08-25 这个小游戏可以增加对面向对象的理解,可以加强js逻辑能力,总之认真自己敲一两遍收获还是不少啊!!适合刚学canvas的同学练习!! 废话不多说 ...

  3. Git客户端图文详解如何安装配置GitHub操作流程攻略

    收藏自 http://www.ihref.com/read-16377.html Git介绍 分布式 : Git版本控制系统是一个分布式的系统, 是用来保存工程源代码历史状态的命令行工具; 保存点 : ...

  4. php 递归 适合刚刚接解递归的人看

    递归,就是自己调用自己,当满足某条件时层层退出(后进先出). --------------------------------------------------------------------- ...

  5. php中的占位符

    1.?这种形式传值,注意是数组! 2.:name的形式.

  6. Python之MySql操作

    1.安装驱动 输入命令:pip install MySQL-python 2.直接使用驱动 #coding=utf-8 import MySQLdb conn= MySQLdb.connect( ho ...

  7. 在usercontrol中如何使用验证控件CustomValidator 中的客户端验证

    在用户控件中,为一个文本控件添加CustomValidator验证,然后设置CustomValidator 的ClientValidationFunction 属性为客户端的Validate(sour ...

  8. SSD1306驱动的OLED实验

    [转]http://bbs.21ic.com/icview-434543-1-1.html 前面几章的实例,均没涉及到液晶显示,这一章,我们将向大家介绍OLED的使用.在本章中,我们将使用战舰STM3 ...

  9. Autofac的注入和web.config配合

    public static void BuildMvcContainer() { var builder = new ContainerBuilder(); var assemblys = AppDo ...

  10. python自学笔记一

    之前看过一段时间的小甲鱼零基础自学python,b站上有高清免费资源[av4050443],但是作为零基础实在学得艰难,下载了python核心编程pdf,在这里做一些笔记. 虽然使用的是第二版的教材, ...