Description

在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认 为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸运号码”总是太少 了,比如在[1,100]的区间内就只有6个(6,8,66,68,86,88),于是他又定义了一种“近似幸运号码”。lxhgww规定,凡是“幸运号 码”的倍数都是“近似幸运号码”,当然,任何的“幸运号码”也都是“近似幸运号码”,比如12,16,666都是“近似幸运号码”。 现在lxhgww想知道在一段闭区间[a, b]内,“近似幸运号码”的个数。

Input

输入数据是一行,包括2个数字a和b

Output

输出数据是一行,包括1个数字,表示在闭区间[a, b]内“近似幸运号码”的个数

HINT

【数据范围】
对于$30\%$的数据,保证$1 \leqslant a \leqslant b \leqslant1000000$
对于$100\%$的数据,保证$1 \leqslant a \leqslant b \leqslant 10000000000$

 
  这道题一开始我还以为需要用到什么神奇的数学推导,或者一些什么奇妙的数学公式,然后看了题解之后发现是一道搜索题……
  一个非常显然的事实就是幸运号码不会太多。把表打出来,就会发现在$10^{10}$以内的幸运数只有$2000$多一点……
  这个时候一个非常显然的想法就是对这些数进行容斥,即加上每个数的倍数个数,减去两个数的倍数个数,加上三个的,……以此类推。
  这样的复杂度显然是不对的,理论上可达$O(2^x)$,其中$x$为幸运数个数。但是由于多个数的倍数不能超过右边界,就可以减一大刀,实际复杂度低了不知道多少。
  但是这样任然不够。我们还可以对幸运数进行处理,将其中是另外的幸运数的倍数的数给去掉。这样可以将需要考虑的数的个数减掉一半左右。
  最后还有一个小优化,那就是将最后需要处理的幸运数按从大到小排好序。这样可以让乘积尽早变得更大,可以减掉许多不必要的计算。
  加了上述优化,就差不多可以$AC$了。
  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 10010 using namespace std;
typedef long long llg; int la,lb,ci;
llg now,ans,mi[15],l,r;
llg a[maxn],b[maxn]; void search(int d){
if(now>r) return;
llg xx=now;
now=xx+6*mi[d]; search(d+1);
now=xx+8*mi[d]; search(d+1);
if(xx) a[++la]=xx; now=xx;
} llg gcd(llg a,llg b){
llg r=a%b;
while(r) a=b,b=r,r=a%b;
return b;
} void dfs(int j){
if(j==lb+1){
if(!ci) return;
if(ci&1) ans+=r/now-(l-1)/now;
else ans-=r/now-(l-1)/now;
return;
}
dfs(j+1); llg xx=now; ci++;
now=xx/gcd(xx,b[j]);
if((double)now*b[j]<=r){
now*=b[j];
if(now<=r) dfs(j+1);
}
ci--; now=xx;
} int main(){
File("a");
mi[0]=1;
for(int i=1;i<=10;i++) mi[i]=mi[i-1]*10;
scanf("%lld %lld",&l,&r);
search(0); sort(a+1,a+la+1);
for(int i=1;i<=la;i++){
b[++lb]=a[i];
for(int j=1;j<lb;j++)
if(a[i]%b[j]==0){lb--; break;}
}
for(int i=1;i<=lb/2;i++) swap(b[i],b[lb-i+1]);
now=1; dfs(1);
printf("%lld",ans);
return 0;
}

BZOJ 1853 【Scoi2010】 幸运数字的更多相关文章

  1. BZOJ 1853: [Scoi2010]幸运数字

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2117  Solved: 779[Submit][Status] ...

  2. Bzoj 1853: [Scoi2010]幸运数字 容斥原理,深搜

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 1774  Solved: 644[Submit][Status] ...

  3. bzoj 1853: [Scoi2010]幸运数字 容斥

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 1170  Solved: 406[Submit][Status] ...

  4. BZOJ 1853: [Scoi2010]幸运数字(容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1853 题意: 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运 ...

  5. bzoj 1853: [Scoi2010]幸运数字&&2393: Cirno的完美算数教室【容斥原理】

    翻了一些blog,只有我用状压预处理嘛2333,.把二进制位的0当成6,1当成8就行啦.(2393是2和9 然后\( dfs \)容斥,加上一个数的\( lcm \),减去两个数的\( lcm \), ...

  6. ●BZOJ 1853 [Scoi2010]幸运数字

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1853 题解: 容斥原理,暴力搜索,剪枝(这剪枝剪得真玄学) 首先容易发现,幸运号码不超过 2 ...

  7. 【BZOJ 1853】 1853: [Scoi2010]幸运数字 (容斥原理)

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2472  Solved: 911 Description 在中国 ...

  8. 1853: [Scoi2010]幸运数字[容斥原理]

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2405  Solved: 887[Submit][Status] ...

  9. BZOJ2393 & 1853 [Scoi2010]幸运数字 【搜索 + 容斥】

    题目 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是" ...

  10. AC日记——[SCOI2010]幸运数字 bzoj 1853

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2405  Solved: 887[Submit][Status] ...

随机推荐

  1. jquery固定在顶部的导航菜单

    体验效果:http://hovertree.com/texiao/jquery/6.htm HTML文件代码: <!DOCTYPE html PUBLIC "-//W3C//DTD X ...

  2. CSS3中的弹性布局——"em"的用法

    使用CSS也好久了,但一直都是在使用“px”来设置Web元素的相关属性,未敢使用“em”.主要原因是,对其并不什么了解,只知道一点概念性的东西,前段时间在项目中要求使用“em”作为单位设置元素,所以从 ...

  3. SharePoint 2013 Ajax 造成页面无法编辑

    1.如下图,在编辑页面的时候,出现如下错误“此网页自上次打开后已被修改,必须再次打开该网页”,页面上没有什么特别的设置,就是default.aspx: 2.编辑之前页面,只有一个内容编辑器部件,和若干 ...

  4. 好神奇的代码,可以让匿名用户对特定SharePoint 列表拥用添加列表项的权限哦

    如果你不使用代码,很难从界面上去设置列表的匿名用户(如果可以请告诉我,我会自动删除这个博文)拥有列表项的添加权限. 其实这种需求是非常必要的,比如: 1.允许新用户去提交一个注册申请, 2.在召集临时 ...

  5. SharePoint 2013 User Profile Services之跨场发布

    在之前博客中已经描述了User Profile的两种配置场景,这篇博客将详细介绍微软官方推荐的配置方法. 测试环境的架构可以参考之前的博客内容,这里就不做介绍了,直接切入主题. 1. 在sp-farm ...

  6. Mac版PhpStorm之XAMPP整合apache服务器配置

    版权声明:本文为博主原创文章,未经博主允许不得转载. 选择在PhpStorm集成apache服务器,下面是我自己的亲测的步骤. 1.如何修改apache默认端口 xampp apache默认的http ...

  7. border 外边框

    语法: border:<line-width> || <line-style> || <color> <line-width> = <length ...

  8. [css]我要用css画幅画(三)

    接着之前的[css]我要用css画幅画(二), 今天,我画了一个小人,他的名字暂时叫作小明. 以下只列出本次修改增加的内容 html如下: <div class="human left ...

  9. Git的冲突解决过程

    下面图是我总结一次提交遇到冲突解决的过程. 1. 把本地工作区的修改提交到本地仓库 2. 从远程仓库拉取代码,与本地仓库合并(pull = fetch + merge) 3. 本地仓库的代码推送回工作 ...

  10. centos为用户增加ssh key

    linux增加用户,为用户增加key 可以用  ssh-keygen -t rsa 添加ssh的key,会得到public_key和自己的private_key 然后这个key可以用在任何用户上 ad ...