[hdu7013]String Mod
枚举$a$和$b$出现的次数,问题即求
$$
A_{i,j}=\sum_{p=0}^{L}\sum_{q=0}^{L-p}[n\mid (p-i)][n\mid (q-j)]{L\choose p}{L-p\choose q}(k-2)^{L-(p+q)}
$$
考虑单位根反演,即$[n\mid i]=\frac{\sum_{k=0}^{n-1}\omega^{ik}}{n}$(其中$\omega=g^{\frac{P-1}{n}}$,$g$为$P$的原根),代入后也即
$$
\sum_{p=0}^{L}\sum_{q=0}^{L-p}\frac{\sum_{x=0}^{n-1}\omega^{(p-i)x}}{n}\frac{\sum_{y=0}^{n-1}\omega^{(q-j)y}}{n}{L\choose p}{L-p\choose q}(k-2)^{L-(p+q)}
$$
将其整理并调换枚举顺序,即
$$
\frac{1}{n^{2}}\sum_{x=0}^{n-1}\sum_{y=0}^{n-1}\frac{1}{\omega^{ix}}\frac{1}{\omega^{jy}}\sum_{p=0}{L\choose p}(\omega^{x})^{p}\sum_{q=0}^{L-p}{L-p\choose q}(k-2)^{(L-p)-q}
$$
根据二项式定理,即
$$
\frac{1}{n^{2}}\sum_{x=0}^{n-1}\sum_{y=0}^{n-1}\frac{1}{\omega^{ix}}\frac{1}{\omega^{jy}}(\omega^{x}+{\omega^{y}}+k-2)^{L}
$$
类似于生成函数,考虑构造矩阵,即
$$
\begin{cases}X_{i,j}=Y_{i,j}=\frac{1}{\omega^{ij}}\\V_{i,j}=\frac{1}{n^{2}}(\omega^{i}+\omega^{j}+k-2)^{L}\end{cases}
$$
($i$和$j$的范围都是$[0,n)$,即矩阵大小为$n\times n$)
根据式子不难得到$A=XVY$,矩阵乘法计算即可
(另外关于$P$的原根$g$,不难暴力得到$g=13$成立)
时间复杂度为$o(n^{2}\log L+n^{3})$(前者为快速幂),可以通过
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
![](https://images.cnblogs.com/OutliningIndicators/ExpandedBlockStart.gif)
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 505
4 #define mod 1000000009
5 #define ll long long
6 int t,m,n,g,invg,ans,A[N][N],X[N][N],V[N][N],Y[N][N];
7 ll L;
8 int qpow(int n,ll m){
9 int s=n,ans=1;
10 while (m){
11 if (m&1)ans=(ll)ans*s%mod;
12 s=(ll)s*s%mod;
13 m>>=1;
14 }
15 return ans;
16 }
17 int main(){
18 scanf("%d",&t);
19 while (t--){
20 scanf("%d%lld%d",&m,&L,&n);
21 g=qpow(13,(mod-1)/n);
22 invg=qpow(g,mod-2);
23 for(int i=0;i<n;i++)
24 for(int j=0;j<n;j++){
25 A[i][j]=0;
26 X[i][j]=Y[i][j]=qpow(invg,i*j);
27 V[i][j]=(ll)qpow(n*n,mod-2)*qpow((qpow(g,i)+qpow(g,j)+m-2)%mod,L)%mod;
28 }
29 for(int i=0;i<n;i++)
30 for(int j=0;j<n;j++)
31 for(int k=0;k<n;k++)A[i][j]=(A[i][j]+(ll)X[i][k]*V[k][j])%mod;
32 for(int i=0;i<n;i++)
33 for(int j=0;j<n;j++){
34 ans=0;
35 for(int k=0;k<n;k++)ans=(ans+(ll)A[i][k]*Y[k][j])%mod;
36 printf("%d",ans);
37 if (j!=n-1)printf(" ");
38 else printf("\n");
39 }
40 }
41 return 0;
42 }
[hdu7013]String Mod的更多相关文章
- RSA算法的C++string实现(模幂算法和欧几里得算法的使用)后附思路
void resetNumA(string numAStr); //使用string重置numB void resetNumB(string numBStr); //将数组转换为字符串,用于输出 st ...
- action 方法的访问
Action中的方法的访问: 访问Action的中的方法,默认情况下只能访问execute方法.那么多次请求就不能提交到一个Action.能不能一个模块的多次请求提交到一个Action中? * 需要使 ...
- Struts2注解 特别注意
1 Struts2注解的作用 使用注解可以用来替换struts.xml配置文件!!! 2 导包 必须导入struts2-convention-plugin-2.3.15.jar包,它在struts2安 ...
- temporary
private void OnAttendeeConnected(object pObjAttendee) { IRDPSRAPIAttendee pAttendee = pObjAttendee a ...
- CCNET+MSBuild+SVN实时构建的优化总结
本文不是介绍如何使用CCNET+MSBuild+SVN构建自动编译系统,相关的内容可以从很多地方获取,可以再园子里搜一下. 随着我们的SVN库日益壮大,容量达到10G,几十G 甚至更大时,我们发现自动 ...
- jst通用删除数组中重复的值和删除字符串中重复的字符
以下内容属于个人原创,转载请注明出处,非常感谢! 删除数组中重复的值或者删除字符串重复的字符,是我们前端开发人员碰到很多这样的场景.还有求职者在被面试时也会碰到这样的问题!比如:问删除字符串重复的字符 ...
- JAVA设计模式之【装饰者模式】
JAVA设计模式之[装饰者模式] 装饰模式 对新房进行装修并没有改变房屋的本质,但它可以让房子变得更漂亮.更温馨.更实用. 在软件设计中,对已有对象(新房)的功能进行扩展(装修). 把通用功能封装在装 ...
- [Swift]LeetCode405. 数字转换为十六进制数 | Convert a Number to Hexadecimal
Given an integer, write an algorithm to convert it to hexadecimal. For negative integer, two’s compl ...
- struts2框架学习之第二天
day02 下面是在每个Action之前都会执行的拦截器,这段代码来自与struts-default.xml文件. <interceptor-stack name="defaultSt ...
随机推荐
- (Java)面向对象的三大特征
封装.继承与多态 封装 封装的作用(好处) 提高程序安全性,保护数据 隐藏代码的实现细节 统一接口 增加系统可维护性 属性私有(关键字private) 加上Private可使该属性私有于一个类,在其他 ...
- MySQL5.7.26二进制安装
1.安装系统版本 2.解压更换路径 tar xf mysql-5.7.26-linux-glibc2.12-x86_64.tar.gz mv mysql-5.7.26-linux-glibc2.12- ...
- 题解 CF914G Sum the Fibonacci
题目传送门 题目大意 给出\(n,s_{1,2,...,n}\),定义一个五元组\((a,b,c,d,e)\)合法当且仅当: \[1\le a,b,c,d,e\le n \] \[(s_a\vee s ...
- PTA实验7-2-3 求矩阵的局部极大值 (15分)
实验7-2-3 求矩阵的局部极大值 (15分) 给定M行N列的整数矩阵A,如果A的非边界元素A[i][j]大于相邻的上下左右4个元素,那么就称元素A[i][j]是矩阵的局部极大值.本题要求给定矩阵的全 ...
- javascriptRemke之类的继承
前言:es6之前在js中要实现继承,就必须要我们程序员在原型链上手动继承多对象的操作,但是结果往往存在漏洞,为解决这些问题,社区中出现了盗用构造函数.组合继承.原型式继承.寄生式继承等一系列继承方式, ...
- 【c++ Prime 学习笔记】第9章 顺序容器
一个容器是特定类型对象的集合 顺序容器中元素的顺序与其加入容器的位置对应 关联容器中元素的顺序由其关联的关键字决定,关联容器分为有序关联容器和无序关联容器 所有容器类共享公有接口,不同容器按不同方式扩 ...
- 【数据结构与算法Python版学习笔记】基本数据结构——列表 List,链表实现
无序表链表 定义 一种数据项按照相对位置存放的数据集 抽象数据类型无序列表 UnorderedList 方法 list() 创建一个新的空列表.它不需要参数,而返回一个空列表. add(item) 将 ...
- [敏捷软工团队博客]Beta阶段测试报告
项目 内容 2020春季计算机学院软件工程(罗杰 任健) 博客园班级博客 作业要求 Beta阶段测试报告 我们在这个课程的目标是 在团队合作中锻炼自己 这个作业在哪个具体方面帮助我们实现目标 对Bet ...
- [软工顶级理解组] 团队任务拆解(Alpha)
一.任务概述 在alpha阶段,我们需要完成功能规格说明书中所提到的所有功能,在一个阶段的开发周期内,交付最小可行的可用版本. 二.任务分配及时长 分组&成员 具体任务 预计时长(小时) 前端 ...
- 【二食堂】Alpha - Scrum Meeting 1
Scrum Meeting 1 例会时间:4.10 8:00 - 8:30 进度情况 组员 上周进度 明日任务 李健 1. 在Anaconda3中搭建了python和django的环境issue1. ...