枚举$a$​​​和$b$​​​​​出现的次数,问题即求
$$
A_{i,j}=\sum_{p=0}^{L}\sum_{q=0}^{L-p}[n\mid (p-i)][n\mid (q-j)]{L\choose p}{L-p\choose q}(k-2)^{L-(p+q)}
$$
考虑单位根反演,即$[n\mid i]=\frac{\sum_{k=0}^{n-1}\omega^{ik}}{n}$​​(其中$\omega=g^{\frac{P-1}{n}}$​,$g$​为$P$​​的原根),代入后也即
$$
\sum_{p=0}^{L}\sum_{q=0}^{L-p}\frac{\sum_{x=0}^{n-1}\omega^{(p-i)x}}{n}\frac{\sum_{y=0}^{n-1}\omega^{(q-j)y}}{n}{L\choose p}{L-p\choose q}(k-2)^{L-(p+q)}
$$

将其整理并调换枚举顺序,即
$$
\frac{1}{n^{2}}\sum_{x=0}^{n-1}\sum_{y=0}^{n-1}\frac{1}{\omega^{ix}}\frac{1}{\omega^{jy}}\sum_{p=0}{L\choose p}(\omega^{x})^{p}\sum_{q=0}^{L-p}{L-p\choose q}(k-2)^{(L-p)-q}
$$
根据二项式定理,即
$$
\frac{1}{n^{2}}\sum_{x=0}^{n-1}\sum_{y=0}^{n-1}\frac{1}{\omega^{ix}}\frac{1}{\omega^{jy}}(\omega^{x}+{\omega^{y}}+k-2)^{L}
$$
类似于生成函数,考虑构造矩阵,即
$$
\begin{cases}X_{i,j}=Y_{i,j}=\frac{1}{\omega^{ij}}\\V_{i,j}=\frac{1}{n^{2}}(\omega^{i}+\omega^{j}+k-2)^{L}\end{cases}
$$
($i$​​和$j$​​的范围都是$[0,n)$​​,即矩阵大小为$n\times n$​​​)

根据式子不难得到$A=XVY$​,矩阵乘法计算即可

(另外关于$P$​的原根$g$​,不难暴力得到$g=13$成立)

时间复杂度为$o(n^{2}\log L+n^{3})$​​(前者为快速幂)​,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 505
4 #define mod 1000000009
5 #define ll long long
6 int t,m,n,g,invg,ans,A[N][N],X[N][N],V[N][N],Y[N][N];
7 ll L;
8 int qpow(int n,ll m){
9 int s=n,ans=1;
10 while (m){
11 if (m&1)ans=(ll)ans*s%mod;
12 s=(ll)s*s%mod;
13 m>>=1;
14 }
15 return ans;
16 }
17 int main(){
18 scanf("%d",&t);
19 while (t--){
20 scanf("%d%lld%d",&m,&L,&n);
21 g=qpow(13,(mod-1)/n);
22 invg=qpow(g,mod-2);
23 for(int i=0;i<n;i++)
24 for(int j=0;j<n;j++){
25 A[i][j]=0;
26 X[i][j]=Y[i][j]=qpow(invg,i*j);
27 V[i][j]=(ll)qpow(n*n,mod-2)*qpow((qpow(g,i)+qpow(g,j)+m-2)%mod,L)%mod;
28 }
29 for(int i=0;i<n;i++)
30 for(int j=0;j<n;j++)
31 for(int k=0;k<n;k++)A[i][j]=(A[i][j]+(ll)X[i][k]*V[k][j])%mod;
32 for(int i=0;i<n;i++)
33 for(int j=0;j<n;j++){
34 ans=0;
35 for(int k=0;k<n;k++)ans=(ans+(ll)A[i][k]*Y[k][j])%mod;
36 printf("%d",ans);
37 if (j!=n-1)printf(" ");
38 else printf("\n");
39 }
40 }
41 return 0;
42 }

[hdu7013]String Mod的更多相关文章

  1. RSA算法的C++string实现(模幂算法和欧几里得算法的使用)后附思路

    void resetNumA(string numAStr); //使用string重置numB void resetNumB(string numBStr); //将数组转换为字符串,用于输出 st ...

  2. action 方法的访问

    Action中的方法的访问: 访问Action的中的方法,默认情况下只能访问execute方法.那么多次请求就不能提交到一个Action.能不能一个模块的多次请求提交到一个Action中? * 需要使 ...

  3. Struts2注解 特别注意

    1 Struts2注解的作用 使用注解可以用来替换struts.xml配置文件!!! 2 导包 必须导入struts2-convention-plugin-2.3.15.jar包,它在struts2安 ...

  4. temporary

    private void OnAttendeeConnected(object pObjAttendee) { IRDPSRAPIAttendee pAttendee = pObjAttendee a ...

  5. CCNET+MSBuild+SVN实时构建的优化总结

    本文不是介绍如何使用CCNET+MSBuild+SVN构建自动编译系统,相关的内容可以从很多地方获取,可以再园子里搜一下. 随着我们的SVN库日益壮大,容量达到10G,几十G 甚至更大时,我们发现自动 ...

  6. jst通用删除数组中重复的值和删除字符串中重复的字符

    以下内容属于个人原创,转载请注明出处,非常感谢! 删除数组中重复的值或者删除字符串重复的字符,是我们前端开发人员碰到很多这样的场景.还有求职者在被面试时也会碰到这样的问题!比如:问删除字符串重复的字符 ...

  7. JAVA设计模式之【装饰者模式】

    JAVA设计模式之[装饰者模式] 装饰模式 对新房进行装修并没有改变房屋的本质,但它可以让房子变得更漂亮.更温馨.更实用. 在软件设计中,对已有对象(新房)的功能进行扩展(装修). 把通用功能封装在装 ...

  8. [Swift]LeetCode405. 数字转换为十六进制数 | Convert a Number to Hexadecimal

    Given an integer, write an algorithm to convert it to hexadecimal. For negative integer, two’s compl ...

  9. struts2框架学习之第二天

    day02 下面是在每个Action之前都会执行的拦截器,这段代码来自与struts-default.xml文件. <interceptor-stack name="defaultSt ...

随机推荐

  1. 数据库的高可用MHA实验步骤

    一.多机互信的步骤 双机互信的步骤 第一步:在master管理服务器上ssh-keygen 在master同一台管理服务器上重新开一个窗口ssh-copy-id 192.168.0.13自己给自己互信 ...

  2. 简单的 Go 入门教程

    Go(又称 Golang )是 Google 开发的一种静态强类型.编译型.并发型,并具有垃圾回收功能的编程语言 Docker 和 Kubernetes 都是使用 Go 进行开发的,这几年 Go 越来 ...

  3. Windows系统安装Java步骤

    今天学习到Burp Suite的使用,提示到安装Burp Suite需要安装Java环境. 于是乎,本弱鸡开启了漫长的Java环境安装之路~ 一.Java SE版本众多,在这里推荐下载Java1.8版 ...

  4. WPF实现雷达图(仿英雄联盟)

    WPF开发者QQ群: 340500857  | 微信群 -> 进入公众号主页 加入组织 前言 有小伙伴提出需要实现雷达图. 由于在WPF中没有现成的雷达图控件,所以我们自己实现一个. PS:有更 ...

  5. [源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎

    [源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎 目录 [源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎 0x00 摘要 0x01 前文回顾 1.1 训 ...

  6. 面试题 08.12. N皇后

    题目 设计一种算法,打印 N 皇后在 N × N 棋盘上的各种摆法,其中每个皇后都不同行.不同列,也不在对角线上.这里的"对角线"指的是所有的对角线,不只是平分整个棋盘的那两条对角 ...

  7. [Beta]the Agiles Scrum Meeting 3

    会议时间:2020.5.14 20:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 yjy 实现前端界面美化 tq 实现查看.删除测试点功能的前端修复功能中的bug wjx 升级系统实现 ...

  8. OO面向对象第三次作业总结

    面向对象第三次作业总结 一.JML基础梳理及工具链 注释结构 行注释://@annotation 块注释:/*@ annotation @*/ 两种注释都是放在被注释部分上面. 常见表达式 原子表达式 ...

  9. Spring Security Resource Server的使用

    Spring Security Resource Server的使用 一.背景 二.需求 三.分析 四.资源服务器认证流程 五.实现资源服务器 1.引入jar包 2.资源服务器配置 3.资源 六.测试 ...

  10. AOP源码解析:AspectJExpressionPointcutAdvisor类

    先看看 AspectJExpressionPointcutAdvisor 的类图 再了解一下切点(Pointcut)表达式,它指定触发advice的方法,可以精确到返回参数,参数类型,方法名 1 pa ...