一、概述

  对于由Python训练的机器学习模型,通常有pickle和pmml两种部署方式,pickle方式用于在python环境中的部署,pmml方式用于跨平台(如Java环境)的部署,本文叙述的是pmml的跨平台部署方式。

  PMML(Predictive Model Markup Language,预测模型标记语言)是一种基于XML描述来存储机器学习模型的标准语言。如,对在Python环境中由sklearn训练得到的模型,通过sklearn2pmml模块可将它完整地保存为一个pmml格式的文件,再在其他平台(如java)中加载该文件进行使用,从而实现模型的跨平台部署。

二、实现步骤

 1.训练环境中安装生成pmml文件的工具。

  如在Python环境中安装sklearn2pmml模块(pip install sklearn2pmml)。

 2.训练模型。

 3.将模型保存为pmml文件。

 4.部署环境中导入依赖的工具包。

  如在Java环境中导入pmml-evaluator、pmml-evaluator-extension(特殊情况下另加)、jaxb-core、jaxb-api、jaxb-impl等jar包。

 5.开发应用,加载、使用模型。

:对sklearn2pmml生成的pmml模型文件,在java中加载使用时,需将文件中的命名空间属性xmlns=".../PMML-4_4"改为xmlns=".../PMML-4_3",以适应低版本的jar包对它的解析。

三、示例

  在python中使用sklearn训练一个线性回归模型,并在java环境中部署使用。

工具:PyCharm-2017、Python-39、sklearn2pmml-0.76.1;IntelliJ IDEA-2018、jdk-14.0.2。

1.训练数据集training_data.csv

2.训练、保存模型

import sklearn2pmml as pmml
from sklearn2pmml import PMMLPipeline
from sklearn import linear_model as lm
import os
import pandas as pd def save_model(data, model_path):
pipeline = PMMLPipeline([("regression", lm.LinearRegression())]) #定义模型,放入pipeline管道
pipeline.fit(data[["x"]], data["y"]) #训练模型,由数据中第一行的名称确定自变量和因变量
pmml.sklearn2pmml(pipeline, model_path, with_repr=True) #保存模型 if __name__ == "__main__":
data = pd.read_csv("training_data.csv")
model_path = model_path = os.path.dirname(os.path.abspath(__file__)) + "/my_example_model.pmml"
save_model(data, model_path)
print("模型保存完成。")

3.将pmml文件的xmlns属性修改为PMML-4_3

4.java程序中加载、使用模型

(1)创建maven项目,将pmml模型文件拷贝至项目根目录下。

(2)加入依赖包

<dependencies>
<dependency>
<groupId>org.jpmml</groupId>
<artifactId>pmml-evaluator</artifactId>
<version>1.4.15</version>
</dependency>
<dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-core</artifactId>
<version>2.2.11</version>
</dependency>
<dependency>
<groupId>javax.xml</groupId>
<artifactId>jaxb-api</artifactId>
<version>2.1</version>
</dependency>
<dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-impl</artifactId>
<version>2.2.11</version>
</dependency>
</dependencies>

(3)java程序加载模型完成预测

public class MLPmmlDeploy {
public static void main(String[] args) { String model_path = "./my_example_model.pmml"; //模型路径
int x = 20; //测试的自变量值 Evaluator model = loadModel(model_path); //加载模型
Object r = predict(model, x); //预测 Double result = Double.parseDouble(r.toString());
System.out.println("预测的结果为:" + result);
} private static Evaluator loadModel(String model_path){
PMML pmml = new PMML(); //定义PMML对象
InputStream inputStream; //定义输入流
try {
inputStream = new FileInputStream(model_path); //输入流接到磁盘上的模型文件
pmml = PMMLUtil.unmarshal(inputStream); //将输入流解析为PMML对象
}catch (Exception e){
e.printStackTrace();
} ModelEvaluatorFactory modelEvaluatorFactory = ModelEvaluatorFactory.newInstance(); //实例化一个模型构造工厂
Evaluator evaluator = modelEvaluatorFactory.newModelEvaluator(pmml); //将PMML对象构造为Evaluator模型对象 return evaluator;
} private static Object predict(Evaluator evaluator, int x){
Map<String, Integer> data = new HashMap<String, Integer>(); //定义测试数据Map,存入各元自变量
data.put("x", x); //键"x"为自变量的名称,应与训练数据中的自变量名称一致
List<InputField> inputFieldList = evaluator.getInputFields(); //得到模型各元自变量的属性列表 Map<FieldName, FieldValue> arguments = new LinkedHashMap<FieldName, FieldValue>();
for (InputField inputField : inputFieldList) { //遍历各元自变量的属性列表
FieldName inputFieldName = inputField.getName();
Object rawValue = data.get(inputFieldName.getValue()); //取出该元变量的值
FieldValue inputFieldValue = inputField.prepare(rawValue); //将值加入该元自变量属性中
arguments.put(inputFieldName, inputFieldValue); //变量名和变量值的对加入LinkedHashMap
} Map<FieldName, ?> results = evaluator.evaluate(arguments); //进行预测
List<TargetField> targetFieldList = evaluator.getTargetFields(); //得到模型各元因变量的属性列表
FieldName targetFieldName = targetFieldList.get(0).getName(); //第一元因变量名称
Object targetFieldValue = results.get(targetFieldName); //由因变量名称得到值 return targetFieldValue;
} }

示例下载:

https://download.csdn.net/download/Albert201605/45645889

End.

参考

  1. https://www.freesion.com/article/4628411548/
  2. https://www.cnblogs.com/pinard/p/9220199.html
  3. https://www.cnblogs.com/moonlightpoet/p/5533313.html

使用pmml实现跨平台部署机器学习模型的更多相关文章

  1. 使用pmml跨平台部署机器学习模型Demo——房价预测

      基于房价数据,在python中训练得到一个线性回归的模型,在JavaWeb中加载模型完成房价预测的功能. 一. 训练.保存模型 工具:PyCharm-2017.Python-39.sklearn2 ...

  2. 使用Flask部署机器学习模型

    Introduction A lot of Machine Learning (ML) projects, amateur and professional, start with an aplomb ...

  3. 用PMML实现机器学习模型的跨平台上线

    在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这些产品很多只支持某些特定的生产环 ...

  4. 用PMML实现python机器学习模型的跨平台上线

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  5. 使用ML.NET + ASP.NET Core + Docker + Azure Container Instances部署.NET机器学习模型

    本文将使用ML.NET创建机器学习分类模型,通过ASP.NET Core Web API公开它,将其打包到Docker容器中,并通过Azure Container Instances将其部署到云中. ...

  6. tensorflow机器学习模型的跨平台上线

    在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法 ...

  7. Kubernetes入门(四)——如何在Kubernetes中部署一个可对外服务的Tensorflow机器学习模型

    机器学习模型常用Docker部署,而如何对Docker部署的模型进行管理呢?工业界的解决方案是使用Kubernetes来管理.编排容器.Kubernetes的理论知识不是本文讨论的重点,这里不再赘述, ...

  8. 基于FastAPI和Docker的机器学习模型部署快速上手

    针对前文所述 机器学习模型部署摘要 中docker+fastapi部署机器学习的一个完整示例 outline fastapi简单示例 基于文件内容检测的机器学习&fastapi 在docker ...

  9. 为你的机器学习模型创建API服务

    1. 什么是API 当调包侠们训练好一个模型后,下一步要做的就是与业务开发组同学们进行代码对接,以便这些‘AI大脑’们可以顺利的被使用.然而往往要面临不同编程语言的挑战,例如很常见的是调包侠们用Pyt ...

随机推荐

  1. xmake v2.5.8 发布,新增 Pascal/Swig 程序和 Lua53 运行时支持

    xmake 是一个基于 Lua 的轻量级跨平台构建工具,使用 xmake.lua 维护项目构建,相比 makefile/CMakeLists.txt,配置语法更加简洁直观,对新手非常友好,短时间内就能 ...

  2. 10.1 HTTP

    1.跨网络的主机间通讯 套接字Socket是进程间通信IPC的一种实现,允许位于不同主机(或同一主机)上不同进程之间通信和数据交换 在建立通信连接的每一端,进程间的传输要有两个标志:IP地址和端口号, ...

  3. 改头换面为哪般,最像Android的Windows——Win11升级安装体验

    在过完了十一小长假之后,各位打工人.学僧党可期待的不仅仅是新一轮的工作,Windows11也在10月5日悄悄正式发布,正式版已经面向MSDN订阅用户开放下载. 作为微软金牌合作伙伴,本葡萄已在第一时间 ...

  4. 手机淘宝轻店业务 Serverless 研发模式升级实践

    一.前言 随着 Serverless 在业界各云平台落地,阿里内部 Serverless 研发平台.各种研发模式也在业务中逐步落地,如火如荼.在此契机下,淘系团队启动了轻店 Serverless 研发 ...

  5. 题解 [HAOI2016]字符合并

    题目传送门 Description 有一个长度为 \(n\) 的 \(01\) 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数. 得到的新字符和分数由这 k 个字符确定.你需要 ...

  6. VMware中Linux虚拟机与Windows主机共享文件夹

    VMware下Linux虚拟机与Windows主机共享文件夹 1. 安装vm-tool 2. 开启共享文件夹 虚拟机->设置->选项->共享文件夹"右边选择"总是 ...

  7. 【UE4】读写 Texture 数据

    创建texture 方式一 void AActor_Assignment2::TextureFromImage_Internal( const TArray<FColor>& Sr ...

  8. Python爬虫:给我一个链接,快手视频随便下载

    前言 讲一下,文明爬虫,从我做起(1.文章中的程序代码仅供学习,切莫用于商业活动,一经被相关人员发现,本小编概不负责!2.请在服务器闲时运行本程序代码,以免对服务器造成很大的负担.) 1. 实现原理 ...

  9. 第五课第四周笔记3:Multi-Head Attention多头注意力

    Multi-Head Attention多头注意力 让我们进入并了解多头注意力机制. 符号变得有点复杂,但要记住的事情基本上只是你在上一个视频中学到的自我注意机制的四个大循环. 让我们看一下每次计算自 ...

  10. [敏捷软工团队博客]Beta阶段事后分析

    设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件要解决的问题是:现在的软工课程的作业分布在博客园.GitHub上,没有一个集成多种功能的一体化 ...