洛谷 P3195 [HNOI2008] 玩具装箱
链接:
题意:
给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum\limits_{k=i}^jc_k-L\right)^2\),其中 \(L\) 是一个给出的常数,现在需要把所有物品都放进容器,请你最小化总费用。
分析:
这是一道非常经典的好题,适合练习单调队列优化和斜率优化dp。
我们设 \(sum[i]\) 表示物品权值的前缀和,\(dp[i]\) 表示前 \(i\) 个物品的最小总费用,那么有 \(O(n)\) 转移:
\]
我们将后面的式子化一下,把与 \(i\) 有关的和与 \(j\) 有关的拉出来,常数项随意丢进里面,
\]
令 \(A(i)=i+sum[i],B(j)=j+sum[j]+L+1\)
\]
我们发现 \(A(i)\) 和 \(B(j)\) 都是已知的,而 \(A(i)\) 只与当前位置有关,\(B(j)\) 只与之前的位置有关,可以视为决策。
由于存在 \(A(i)B(j)\) 这种既与当前位置有关,又与决策有关的东西,于是我们尝试将与决策有关的东西单独分离出来。我们对这个式子进行变换:
\]
可以将其视为一条斜率为 \(2A(i)\) 的直线,经过定点 \((B(j),dp[j]+B(j)^2)\),截距为 \(dp[i]-A(i)^2\)。
我们成功将决策的信息与整合到了一个点上!现在需要做的就是选择一个最优的点,使得一条斜率一定的直线经过这个点时截距最小。
图片摘自洛谷博客
我们通过观察可以发现,可能作为最优决策的点构成了一个下凸包(这在其他题目中可能不同),且对于一条斜率为 \(k\) 的直线,最优决策点是第一个满足 \(slope(x,x+1)\geq k\) 的点。(\(slope\) 表示斜率)
用单调队列维护凸包。同时注意到每次询问的斜率 \(2A(i)\) 也是单调增的,于是对于找到最优决策点还可以用单调队列优化。
注意到一个细节是要 "插入第0个点" 的信息,否则无法将 \(1\sim i\) 放进一个容器。
算法:
单调队列维护下凸包,同时维护最优决策点,然后每次根据最优决策的信息得到 \(dp[i]\),继续维护凸包即可。时间复杂度 \(O(n)\)。
代码:
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define in read()
inline int read(){
int p=0,f=1;
char c=getchar();
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){p=p*10+c-'0';c=getchar();}
return p*f;
}
const int N=5e4+5;
#define A(x) (x+sum[x])
#define B(x) (x+sum[x]+1+L)
#define X(x) (B(x))
#define Y(x) (dp[x]+B(x)*B(x))
#define dx(x,y) (X(x)-X(y))
#define dy(x,y) (Y(x)-Y(y))
#define slope(x,y)(double(dy(x,y))/dx(x,y))
int n,L,sum[N],dp[N],q[N],qi=1,qn=1;
signed main(){
n=in,L=in;
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+in;
for(int i=1;i<=n;i++){
while(qi<qn&&slope(q[qi+1],q[qi])<2*A(i))qi++;
dp[i]=dp[q[qi]]+(A(i)-B(q[qi]))*(A(i)-B(q[qi]));
while(qn>qi&&slope(q[qn],q[qn-1])>slope(i,q[qn-1]))qn--;
q[++qn]=i;
}
cout<<dp[n];
return 0;
}
题外话:
真的是一道极好的斜优入门题。
洛谷 P3195 [HNOI2008] 玩具装箱的更多相关文章
- 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]
题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- [洛谷P3195][HNOI2008]玩具装箱TOY
题目大意:有n个物体,大小为$c_i$.把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$.费用最小. 题解 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...
- 洛谷 P3195 [HNOI2008]玩具装箱TOY
题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求 ...
- 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...
- 洛谷3195(HNOI2008)玩具装箱
题目:https://www.luogu.org/problemnew/show/P3195 自己做斜率优化的第一道题. 推成斜率优化的样子很重要. 斜率优化的样子就是从 j 中求 i 的话,关系式里 ...
- 洛谷3195 [HNOI2008]玩具装箱TOY(斜率优化+dp)
qwq斜率优化好题 第一步还是考虑最朴素的\(dp\) \[dp=dp[j]+(i-j-1+sum[i]-sum[j])^2 \] 设\(f[i]=sum[i]+i\) 那么考虑将上述柿子变成$$dp ...
随机推荐
- Java优化if-else代码
前言 开发系统一些状态,比如订单状态:数据库存储是数字或字母,但是需要显示中文或英文,一般用到if-else代码判断,但这种判断可读性比较差,也会影响后期维护,也比较容易出现bug.比如: 假设状态对 ...
- Excel表格中单击一个单元格如何将整行整列变色
视图->阅读模式 开启阅读模式后 就会显示如下情景,是的你点击任意单元格后,显示整行/整列
- Stage 1 项目需求分析报告
迷你商城后台管理系统-- 需求分析 1. 引言 作为互联网热潮的崛起,消费者们的普遍差异化,实体商城要想在互联网的浪潮中继续发展,就需要制定出针对用户以及消费者的消费习惯以及喜爱品种的消费方案.从而企 ...
- PHP中的“重载”是个啥?
很多面试官在面试的时候都会问一些面向对象的问题,面向对象的三大特性中,多态最主要的实现方式就是方法的重载和重写.但是在PHP中,只有重写,并没有完全的重载能力的实现. 重写,子类重写父类方法. // ...
- css3 flex的IE8浏览器兼容问题
我这是进行判断浏览器 css判断ie版本才引用样式或css文件 <!--[if !IE]><!--> 除IE外都可识别 <!--<![endif]--> &l ...
- Appium调试分析方法
在使用appium做自动化测试的时候,发现用例报错,如何排查原因? 查看appium日志 appium日志大概是分为以下部分 culr命令调试 在理解appium协议的基础上,可以直接用shell发送 ...
- 对代理IP进行检测是否可用
第一种方法是使用telnetlib import telnetlib import requests from lxml import etree #解析此url页面的IP url = 'http:/ ...
- 定要过python二级 第二套
1.name=random.choice(brandlist) 与第一套中的 random.randint() 2. eval(input()) 看到一段代码,判读输入的数字,用的是eva ...
- SpringBoot之SpringSecurity权限注解在方法上进行权限认证多种方式
前言 Spring Security支持方法级别的权限控制.在此机制上,我们可以在任意层的任意方法上加入权限注解,加入注解的方法将自动被Spring Security保护起来,仅仅允许特定的用户访问, ...
- PyTorch固定参数
In situation of finetuning, parameters in backbone network need to be frozen. To achieve this target ...