实时计算框架:Spark集群搭建与入门案例
一、Spark概述
1、Spark简介
Spark是专为大规模数据处理而设计的,基于内存快速通用,可扩展的集群计算引擎,实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流,运算速度相比于MapReduce得到了显著的提高。
2、运行结构
Driver
运行Spark的Applicaion中main()函数,会创建SparkContext,SparkContext负责和Cluster-Manager进行通信,并负责申请资源、任务分配和监控等。
ClusterManager
负责申请和管理在WorkerNode上运行应用所需的资源,可以高效地在一个计算节点到数千个计算节点之间伸缩计算,目前包括Spark原生的ClusterManager、ApacheMesos和HadoopYARN。
Executor
Application运行在WorkerNode上的一个进程,作为工作节点负责运行Task任务,并且负责将数据存在内存或者磁盘上,每个 Application都有各自独立的一批Executor,任务间相互独立。
二、环境部署
1、Scala环境
安装包管理
[root@hop01 opt]# tar -zxvf scala-2.12.2.tgz
[root@hop01 opt]# mv scala-2.12.2 scala2.12
配置变量
[root@hop01 opt]# vim /etc/profile
export SCALA_HOME=/opt/scala2.12
export PATH=$PATH:$SCALA_HOME/bin
[root@hop01 opt]# source /etc/profile
版本查看
[root@hop01 opt]# scala -version
Scala环境需要部署在Spark运行的相关服务节点上。
2、Spark基础环境
安装包管理
[root@hop01 opt]# tar -zxvf spark-2.1.1-bin-hadoop2.7.tgz
[root@hop01 opt]# mv spark-2.1.1-bin-hadoop2.7 spark2.1
配置变量
[root@hop01 opt]# vim /etc/profile
export SPARK_HOME=/opt/spark2.1
export PATH=$PATH:$SPARK_HOME/bin
[root@hop01 opt]# source /etc/profile
版本查看
[root@hop01 opt]# spark-shell
3、Spark集群配置
服务节点
[root@hop01 opt]# cd /opt/spark2.1/conf/
[root@hop01 conf]# cp slaves.template slaves
[root@hop01 conf]# vim slaves
hop01
hop02
hop03
环境配置
[root@hop01 conf]# cp spark-env.sh.template spark-env.sh
[root@hop01 conf]# vim spark-env.sh
export JAVA_HOME=/opt/jdk1.8
export SCALA_HOME=/opt/scala2.12
export SPARK_MASTER_IP=hop01
export SPARK_LOCAL_IP=安装节点IP
export SPARK_WORKER_MEMORY=1g
export HADOOP_CONF_DIR=/opt/hadoop2.7/etc/hadoop
注意SPARK_LOCAL_IP
的配置。
4、Spark启动
依赖Hadoop相关环境,所以要先启动。
启动:/opt/spark2.1/sbin/start-all.sh
停止:/opt/spark2.1/sbin/stop-all.sh
这里在主节点会启动两个进程:Master和Worker,其他节点只启动一个Worker进程。
5、访问Spark集群
默认端口是:8080。
http://hop01:8080/
运行基础案例:
[root@hop01 spark2.1]# cd /opt/spark2.1/
[root@hop01 spark2.1]# bin/spark-submit --class org.apache.spark.examples.SparkPi --master local examples/jars/spark-examples_2.11-2.1.1.jar
运行结果:Pi is roughly 3.1455357276786384
三、开发案例
1、核心依赖
依赖Spark2.1.1版本:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.1</version>
</dependency>
引入Scala编译插件:
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
2、案例代码开发
读取指定位置的文件,并输出文件内容单词统计结果。
@RestController
public class WordWeb implements Serializable {
@GetMapping("/word/web")
public String getWeb (){
// 1、创建Spark的配置对象
SparkConf sparkConf = new SparkConf().setAppName("LocalCount")
.setMaster("local[*]");
// 2、创建SparkContext对象
JavaSparkContext sc = new JavaSparkContext(sparkConf);
sc.setLogLevel("WARN");
// 3、读取测试文件
JavaRDD lineRdd = sc.textFile("/var/spark/test/word.txt");
// 4、行内容进行切分
JavaRDD wordsRdd = lineRdd.flatMap(new FlatMapFunction() {
@Override
public Iterator call(Object obj) throws Exception {
String value = String.valueOf(obj);
String[] words = value.split(",");
return Arrays.asList(words).iterator();
}
});
// 5、切分的单词进行标注
JavaPairRDD wordAndOneRdd = wordsRdd.mapToPair(new PairFunction() {
@Override
public Tuple2 call(Object obj) throws Exception {
//将单词进行标记:
return new Tuple2(String.valueOf(obj), 1);
}
});
// 6、统计单词出现次数
JavaPairRDD wordAndCountRdd = wordAndOneRdd.reduceByKey(new Function2() {
@Override
public Object call(Object obj1, Object obj2) throws Exception {
return Integer.parseInt(obj1.toString()) + Integer.parseInt(obj2.toString());
}
});
// 7、排序
JavaPairRDD sortedRdd = wordAndCountRdd.sortByKey();
List<Tuple2> finalResult = sortedRdd.collect();
// 8、结果打印
for (Tuple2 tuple2 : finalResult) {
System.out.println(tuple2._1 + " ===> " + tuple2._2);
}
// 9、保存统计结果
sortedRdd.saveAsTextFile("/var/spark/output");
sc.stop();
return "success" ;
}
}
打包执行结果:
查看文件输出:
[root@hop01 output]# vim /var/spark/output/part-00000
四、源代码地址
GitHub·地址
https://github.com/cicadasmile/big-data-parent
GitEE·地址
https://gitee.com/cicadasmile/big-data-parent
阅读标签
【Java基础】【设计模式】【结构与算法】【Linux系统】【数据库】
【分布式架构】【微服务】【大数据组件】【SpringBoot进阶】【Spring&Boot基础】
技术系列
实时计算框架:Spark集群搭建与入门案例的更多相关文章
- Spark集群搭建简配+它到底有多快?【单挑纯C/CPP/HADOOP】
最近耳闻Spark风生水起,这两天利用休息时间研究了一下,果然还是给人不少惊喜.可惜,笔者不善JAVA,只有PYTHON和SCALA接口.花了不少时间从零开始认识PYTHON和SCALA,不少时间答了 ...
- hadoop+spark集群搭建入门
忽略元数据末尾 回到原数据开始处 Hadoop+spark集群搭建 说明: 本文档主要讲述hadoop+spark的集群搭建,linux环境是centos,本文档集群搭建使用两个节点作为集群环境:一个 ...
- Spark集群搭建(local、standalone、yarn)
Spark集群搭建 local本地模式 下载安装包解压即可使用,测试(2.2版本)./bin/spark-submit --class org.apache.spark.examples.SparkP ...
- (四)Spark集群搭建-Java&Python版Spark
Spark集群搭建 视频教程 1.优酷 2.YouTube 安装scala环境 下载地址http://www.scala-lang.org/download/ 上传scala-2.10.5.tgz到m ...
- Spark集群搭建简要
Spark集群搭建 1 Spark编译 1.1 下载源代码 git clone git://github.com/apache/spark.git -b branch-1.6 1.2 修改pom文件 ...
- Spark集群搭建中的问题
参照<Spark实战高手之路>学习的,书籍电子版在51CTO网站 资料链接 Hadoop下载[链接](http://archive.apache.org/dist/hadoop/core/ ...
- Spark集群搭建_Standalone
2017年3月1日, 星期三 Spark集群搭建_Standalone Driver: node1 Worker: node2 Worker: node3 1.下载安装 下载地址 ...
- Spark集群搭建_YARN
2017年3月1日, 星期三 Spark集群搭建_YARN 前提:参考Spark集群搭建_Standalone 1.修改spark中conf中的spark-env.sh 2.Spark on ...
- spark集群搭建
文中的所有操作都是在之前的文章scala的安装及使用文章基础上建立的,重复操作已经简写: 配置中使用了master01.slave01.slave02.slave03: 一.虚拟机中操作(启动网卡)s ...
随机推荐
- MySQL学习笔记(五)
倒数第二天!冲冲冲!!! 一.索引 一个表里面可以有多个索引. 1. 索引的作用:约束与加速查找 无索引:从前到后依次查找 有索引:会为索引列创造一个额外文件(以某种格式存储).在使用索引进行查找时, ...
- 顶级c程序员之路 基础篇 - 第一章 关键字的深度理解 number-1
c语言有32个关键字,每个关键字你都理解吗? 今天出场的是: auto , register, static, extern 为什么他们会一起呢,说到这里不得不谈到c语言对变量的描述. c给每 ...
- windows下MySQL如何完全卸载并安装行的版本
卸载本地mysql之前,请务必要先将需要的数据库备份 停止mysql 服务 windows键-->搜索服务 找到mysql 服务,并停止他 卸载mysql server 在控制面板--程序 找到 ...
- NET 5.0 Swagger API 自动生成MarkDown文档
目录 1.SwaggerDoc引用 主要接口 接口实现 2.Startup配置 注册SwaggerDoc服务 注册Swagger服务 引用Swagger中间件 3.生成MarkDown 4.生成示例 ...
- Java中的Set集合
Set接口简介 Set接口和List接口一样,同样继承自Collection接口,它与Collection接口中的方法基本一致,并没有对Collection接口进行功能上的扩充,它是比Collecti ...
- 正则表达式-Python实现
1.概述: Regular Expression.缩写regex,regexp,R等: 正则表达式是文本处理极为重要的工具.用它可以对字符串按照某种规则进行检索,替换. Shell编程和高级编程语言中 ...
- 攻防世界 reverse leaked-license-64
mark一下,以后分析 原文:http://sibears.ru/labs/ASIS-CTF-Quals-2016-Leaked_License/ [ASIS CTF Quals 2016] - 泄露 ...
- 一次 outline 去除经验(非继承属性,看着像继承)
情况描述: 目前维护的老项目是通过 easyui 生成的 html,嵌套结构非常多,当点击元素后,会有个边框???非常影响页面美观,这是啥迷惑点击交互??? 经验告诉我,这是 css 的 outlin ...
- IOC容器模拟实现
运用反射机制和自定义注解模拟实现IOC容器,使其具有自动加载.自动装配和根据全限定类名获取Bean的功能. 一. 实现原理 1-1 IOC容器的本质 IOC容器可理解为是一个map,其中的一个entr ...
- 第四单元总结&期末总结
OO第四单元总结&期末总结 一.第四单元总结 第一次作业 在第四单元的作业中,我的架构是逐步演进的.设计第一次作业的架构时并没有考虑到后续作业会增加新的图,所以直接把类图的实现放在UmlInt ...