前言

CVPR2016 来自Korea的POSTECH这个团队
 
大部分算法(例如HCF, DeepLMCF)只是用在大量数据上训练好的(pretrain)的一些网络如VGG作为特征提取器,这些做法证实利用CNN深度特征对跟踪结果有显著提升。
但是毕竟clssification 和 tracking是两个不同的课题
(predicting object class labels VS locating targets of arbitrary classes.)
所以作者设计了一个网络来做跟踪。
 
出发点:
1、对于跟踪问题来说,CNN应该是由视频跟踪的数据训练得到的更为合理。所有的跟踪目标,虽然类别各不相同,但其实他们应该都存在某种共性,这是需要网络去学的。
 
2、用跟踪数据来训练很难,因为同一个object,在某个序列中是目标,在另外一个序列中可能就是背景,而且每个序列的目标存在相当大的差异,而且会经历各种挑战,比如遮挡、形变等等。
 
3、现有的很多训练好的网络主要针对的任务比如目标检测、分类、分割等的网络很大,因为他们要分出很多类别的目标。而在跟踪问题中,一个网络只需要分两类:目标和背景。而且目标一般都相对比较小,那么其实不需要这么大的网络,会增加计算负担。
 
针对这三点,作者提出了Multi-Domain Network,多域学习的网络结构,来学习这些目标的共性。
 
什么是multi-domain learning??
训练数据来源于多个domain,domain information被纳入学习过程。是自然语言处理领域一个常见的学习方法(例如用在多个产品的情感分类和多个用户的垃圾邮件过滤等课题中),但很少有人应在计算机视觉领域。
 
Multi-Domain Network(MDNet)
网络结构
首先来看看MDNet的网络结构:
 
 
  1. Input: 网络的输入是107x107的Bounding box,设置为这个尺寸是为了在卷积层conv3能够得到3x3的feature map。
  2. Convolutional layers: 网络的卷积层conv1-conv3来自于VGG-M [1]网络,只是输入的大小做了改变。
  3. Fully connected layers: 接下来的两个全连接层fc4,fc5各有512个输出单元,并设计有ReLUs和Dropouts。fc6是一个二分类层(Domain-specific layers),一共有K个,对应K个Branches(即K个不同的视频),每次训练的时候只有对应该视频的fc6被使用,前面的层都是共享的。
tip:卷积层是一个相对通用的特征提取器,而fc层更多的是针对task和数据集的不同进行自适应调整
 
可以看出,这个网络比clssification重所用的那种AlexNet、VGG-Nets等小很多,这也契合作者的第三条出发点:现有的很多训练好的网络主要针对的任务比如目标检测、分类、分割等的网络很大,因为他们要分出很多类别的目标。而在跟踪问题中,一个网络只需要分两类:目标和背景。而且目标一般都相对比较小,那么其实不需要这么大的网络,会增加计算负担。
 
这里再来强调一下小网络在tracking中的适用性:
1、tracking旨在区分目标和背景两个类别,这比目前一般的视觉识别问题(如1000类的ImageNet分类)要求的模型复杂程度少得多。
2、深度CNN对于精确目标定位的效果较差,因为随着网络的深入,空间信息往往会被淡化。
3、在跟踪任务中通常目标较小,所以输入大小(input size)也就小,网络结构自然也就更浅。
4、跟踪通常是一个实时任务,一个较小的网络在跟踪问题上明显更有效率,训练和测试都可以在线进行的。 当我们测试更大的网络时,算法不太准确,并且变得更慢。
 
那么这个和多域学习有关的Domain-specific layers到底是如何训练的呢?又是如何能够学习跟踪目标的共性,从而契合第一条出发点(所有的跟踪目标,虽然类别各不相同,但其实他们应该都存在某种共性,这是需要网络去学的。)呢?
 
算法的目标是训练一个 multi-domain CNN 以在任何 domain 辨别 target 和 background。这并非很直观,因为来源不同 domain的 train data 拥有不同的 target 和 background 的定义。但是,这其中仍然存在着一些共同的属性,如:对光照变化,运动模糊,尺寸变化的鲁棒性等等。为了提取出满足上述属性的特征,作者通过 multi-domain learning framework,从 domain-specific 的信息中分离出 domain-independent 的信息。
 
为了学到不同视频中目标的共性,采用Domain-specific的训练方式:假设用K个视频来做训练,一共做N次循环。每一个mini-batch的构成是从某一视频中随机采8帧图片,在这8帧图片上随机采32个正样本和96个负样本,即每个mini-batch由某一个视频的128个框来构成。在每一次循环中,会做K次迭代,依次用K个视频的mini-batch来做训练,重复进行N次循环。用SGD进行训练,每个视频会对应自己的fc6层。通过这样的训练来学得各个视频中目标的共性。
 
训练好的网络在做test的时候,会新建一个fc6层,在线fine-tune fc4-fc6层,卷积层保持不变。
 
用MDNet来做跟踪
网络在线更新策略
采用long-term和short-term两种更新方式。
 
这考虑了两个互补的方面,即:robustness 和 adaptiveness。
 
Long-term update 是按照常规间隔后进行更新。
 
short-term updates 当出现潜在的跟踪失败的时候进行更新,此处潜在的跟踪失败是指:预测目标的positive score 小于 0.5。在跟踪的过程当中,我们保持一个单独的网络,这两种更新的执行依赖于物体外观变化的速度。
 
long-term对应历史的100个样本(超过100个抛弃最早的),固定时间间隔做一次网络的更新(程序中设置为每8帧更新一次),short-term对应20个(超过20个抛弃最早的),在目标得分低于0.5进行更新。负样本都是用short-term的方式收集的(因为旧的负样本往往是冗余的或与当前帧无关。)。
 
另外在训练中负样本的生成用到了hard negative mining,就是让负样本越来越难分,从而使得网络的判别能力越来越强。
 
可以看下图,负样本越来越hard negative:(作者称这个步骤叫做Hard Minibatch Mining)
 
 
目标跟踪
每次新来一帧图片,以上一帧的目标位置为中心,用多维高斯分布(宽,高,尺度三个维度)的形式进行采样256个candidates,将他们大小统一为107x107后,分别作为网络的输入进行计算。
 
网络的输出是一个二维的向量,分别表示输入的bounding box对应目标和背景的概率。目标最终是确定为目标得分概率最高的那个bounding box:
 
最后得到的candidate其实不是直接作为目标,还要做一步bounding box regression。作者说bounding box regression涉及到的细节与R-CNN一样。这一步对最后的结果贡献还是有的,可以看下面的实验结果。
 
the single domain learning method (SDNet), where the network is trained with a single branch using the data from multiple sequences.
 
MDNet without bounding box regression (MDNet–BB)
 
MDNet without bounding box regression and hard negative mining (MDNet–BB–HM).
 
 
总结一下MDNet效果好的原因:(摘自博客)
 
  • 用了CNN特征,并且是专门为了tracking设计的网络,用tracking的数据集做了训练
  • 有做在线的微调fine-tune,这一点虽然使得速度慢,但是对结果很重要
  • Candidates的采样同时也考虑到了尺度,使得对尺度变化的视频也相对鲁棒
  • Hard negative mining和bounding box regression这两个策略的使用,使得结果更加精确
 
 
整体流程:
 
整体效果:
 
跑代码:
参考链接:
 

论文阅读:MDNet: Learning Multi-Domain Convolutional Neural Networks for Visual Tracking的更多相关文章

  1. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  2. [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)

    这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...

  3. 【论文笔记】Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition

    地址:https://arxiv.org/pdf/2006.11538.pdf github:https://github.com/iduta/pyconv 目前的卷积神经网络普遍使用3×3的卷积神经 ...

  4. 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper ...

  5. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  6. 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

    Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...

  7. Convolutional Neural Networks for Visual Recognition

    http://cs231n.github.io/   里面有很多相当好的文章 http://cs231n.github.io/convolutional-networks/ Table of Cont ...

  8. Convolutional Neural Networks for Visual Recognition 1

    Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...

  9. Convolutional Neural Networks for Visual Recognition 8

    Convolutional Neural Networks (CNNs / ConvNets) 前面做了如此漫长的铺垫,现在终于来到了课程的重点.Convolutional Neural Networ ...

随机推荐

  1. IDEA的Debug技巧

    01_Debug简介和意义 什么是程序DeBug? Debug,是程序开发人员必会的一项调试程序的技能. 企业中程序开发和程序调试的比例为1:1.5,可以说如果你不会调试程序,你就没有办法从事编程工作 ...

  2. hdu4291 暴力循环节+矩阵快速幂

    题意:       给你一个关系式,x[n] = 3*x[n-1] + x[n-2],求x(x(x[n]))%1000000007. 思路:       做这个题目要明确一点,就是对于取余操作大多数时 ...

  3. 网络基础概念(IP、MAC、网关、子网掩码)

    目录 IP地址 MAC地址 网关 子网掩码 反子网掩码 子网掩码 子网划分一: 子网划分二: 子网汇聚 广播域 冲突域 CSMA/CD IP地址 ip地址是用于标识网络中每台设备的标识.目前 IPV4 ...

  4. XCTF-fakebook

    fakebook stm的fakebook,乍一看还以为是facebook,果然fake 看题 有登录和注册两个功能点 看了下robots.txt,发现有备份文件 果断下载,内容如下 这里的blog在 ...

  5. MongonDb在thinkphp中常用的功能整理

    1.以某字段开头的数据查询条件 $title = input('param.title'); $where['title'] = new \MongoDB\BSON\Regex("^{$ti ...

  6. 【哲学角度看软件测试】要想软件“一想之美”,UI 测试少不了

    摘要:软件测试的最高层次需求是:UI测试,也就是这个软件"长得好不好看". 为了让读者更好地理解测试,我们从最基础的概念开始介绍.以一个软件的"轮回"为例,下图 ...

  7. Postman(接口自动化测试)

    1.Postman 接口测试参数化可能大家都非常的熟悉,但是很多人很难处理参数化后如何断言的问题,特别是当参数中出现中文时,很容易导致在 Runner 页面引入外部文件时导致中文乱码的问题,今天这篇文 ...

  8. NIOSII IDE在WIN7下 couldn't allocate heap

    首先,所有的文件夹都不能有空格和中文 其次,出现这些SB错误 make -s all includes 3 [main] ? (3732) c:\altera\91\quartus\bin\cygwi ...

  9. 【近取 Key】Alpha - v1.0 版本发布说明

    功能与特性 Alpha 版本虽然为本软件的第一代版本,但已基本覆盖了用户个人使用时的主要功能.除登陆注册与后台管理外,下文将分版块详细介绍面向用户的主要功能特性. 『产品主页』 潜在应用场景 场景 0 ...

  10. 克鲁斯卡尔(Kruskal)算法

    概览 相比于普里姆算法(Prim算法),克鲁斯卡尔算法直接以边为目标去构建最小生成树.从按权值由小到大排好序的边集合{E}中逐个寻找权值最小的边来构建最小生成树,只要构建时,不会形成环路即可保证当边集 ...