TensorFlow损失函数

正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数。本文将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数。

声明一个损失函数需要将系数定义为变量,将数据集定义为占位符。可以有一个常学习率或变化的学习率和正则化常数。

在下面的代码中,设 m 是样本数量,n 是特征数量,P 是类别数量。这里应该在代码之前定义这些全局参数:

在标准线性回归的情况下,只有一个输入变量和一个输出变量:

在多元线性回归的情况下,输入变量不止一个,而输出变量仍为一个。现在可以定义占位符X的大小为 [m,n],其中 m 是样本数量,n 是特征数量,代码如下:

在逻辑回归的情况下,损失函数定义为交叉熵。输出 Y 的维数等于训练数据集中类别的数量,其中 P 为类别数量:

如果想把 L1 正则化加到损失上,那么代码如下:

对于 L2 正则化,代码如下:

由此,你应该学会了如何实现不同类型的损失函数。那么根据手头的回归任务,可以选择相应的损失函数或设计自己的损失函数。在损失项中也可以结合 L1 和 L2 正则化。

拓展阅读

为确保收敛,损失函数应为凸的。一个光滑的、可微分的凸损失函数可以提供更好的收敛性。随着学习的进行,损失函数的值应该下降,并最终变得稳定。

TensorFlow损失函数的更多相关文章

  1. Tensorflow 损失函数及学习率的四种改变形式

    Reference: https://blog.csdn.net/marsjhao/article/details/72630147 分类问题损失函数-交叉熵(crossentropy) 交叉熵描述的 ...

  2. Tensorflow 损失函数(loss function)及自定义损失函数(三)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/limiyudianzi/article ...

  3. TensorFlow从0到1之TensorFlow损失函数(12)

    正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数.本节将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数. 声明一个损失函数需要将系数定 ...

  4. tensorflow 自定义损失函数示例

    这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变) 我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元. 如果我们 ...

  5. tensorflow进阶篇-4(损失函数2)

    Hinge损失函数主要用来评估支持向量机算法,但有时也用来评估神经网络算法.下面的示例中是计算两个目标类(-1,1)之间的损失.下面的代码中,使用目标值1,所以预测值离1越近,损失函数值越小: # U ...

  6. TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵

    TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激 ...

  7. tensorflow进阶篇-4(损失函数1)

    L2正则损失函数(即欧拉损失函数),L2正则损失函数是预测值与目标函数差值的平方和.L2正则损失函数是非常有用的损失函数,因为它在目标值附近有更好的曲度,并且离目标越近收敛越慢: # L = (pre ...

  8. 机器学习之路: tensorflow 自定义 损失函数

    git: https://github.com/linyi0604/MachineLearning/tree/master/07_tensorflow/ import tensorflow as tf ...

  9. 机器学习之路:tensorflow 深度学习中 分类问题的损失函数 交叉熵

    经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q( ...

随机推荐

  1. ThinkPHP5 利用.htaccess文件的 Rewrite 规则隐藏URL中的 index.php

    1.首先修改Apache的httpd.conf文件. 确认httpd.conf配置文件中加载了mod_rewrite.so 模块,加载的方法是去掉mod_rewrite.so前面的注释#号 讲http ...

  2. SSDT表概念详解

    SSDT 的全称是 System Services Descriptor Table,系统服务描述符表. 这个表就是一个把 Ring3 的 Win32 API 和 Ring0 的内核 API 联系起来 ...

  3. hdu4941 map交换行列

    题意:      有一个大矩阵,某些格子上有数字,然后有三种操作, 1 交换行 2 交换列 3 询问当前坐标数值 思路:      直接用map去映射行列,用二维的map去存数字就行了,水题,想不通的 ...

  4. DVWA之Stored XSS(存储型XSS)

    目录 Low Medium High Impossible Low 源代码: <?php if( isset( $_POST[ 'btnSign' ] ) ) { // Get input $m ...

  5. POJ3233不错的矩阵(矩阵套矩阵)

    题意:        给一个n*n的矩阵A,然后求S=A + A^2 + A^3 + ..+ A^k. 思路:       矩阵快速幂,这个题目挺新颖的,以往的矩阵快速幂都是退出公式,然后构造矩阵,这 ...

  6. 4.PHP正则表达式与数组

    PHP正则表达式相关 行定位符 开头 ^tm 结尾 tm$ 不限制 tm 单词定界符 \btm\b   单词tm,如果想取反的话就是大写的 \Btm\B 或的关系,[Tt][Mm] 可以表达 tm T ...

  7. 关于ollydbg的堆栈视图的使用(结合crackme2分析)

    在crackme2中我们通过在弹出的窗口处下段然后逐层往用户区回溯,我们利用不断下断点和反复运行程序回溯,其实可以利用Ollydbg的堆栈视图来完成, ollydbg的堆栈视图反映了程序在运行期间函数 ...

  8. OOP第四章博客

    OOP第四章博客作业 (1)本单元作业架构设计 1)针对于第一次作业,我是将所给类进行了自己的封装,在MyUmlInteraction类里面进行关系的建立,这里把所给的UmlClass建立好,同时有i ...

  9. Linux下ftp搭建

    FTP服务器搭建教程: https://blog.csdn.net/plssmile/article/details/17061271 https://blog.csdn.net/guofengdid ...

  10. stressapptest测试用例testcase方法aarch64

    ### https://github.com/stressapptest/stressapptest aarch64 To build from source, the build/installat ...