MegEngine基本概念

基本概念

MegEngine 是基于计算图的深度神经网络学习框架。 本文内容会简要介绍计算图及其相关基本概念,以及在 MegEngine 中的实现。

计算图

结合一个简单的数学表达式来介绍计算图中的基本概念。下图是 y = (w * x) + b 这一数学表达式的计算图表示:

从中可以看到,计算图中存在:

  • 数据节点(图中的实心圈):如输入数据 x 、 w 、b ,运算得到的数据 p ,以及最终的运算输出 y ;
  • 计算节点(图中的空心圈):图中 * 和 + 分别表示计算节点 乘法 和 加法,是施加在数据节点上的运算;
  • 边(图中的箭头):表示数据的流向,体现了数据节点和计算节点之间的依赖关系;

如上便是一个简单的计算图示例。

张量(Tensor

与 PyTorch,TensorFlow 等深度学习框架类似,MegEngine 使用张量(Tensor)来表示计算图中的数据。

张量(Tensor)可以看做 NumPy 中的数组,它可以是一个标量、向量、矩阵或者多维数组。 可以通过 NumPy 或者 Python List 来创建一个 Tensor 。

执行下列代码并查看相关结果:

In [1]:

import numpy as np

import megengine as mge

# 初始化一个维度为 (2, 5) 的 ndarray,并转化成 MegEngine 的 Tensor

# 注:目前 MegEngine Tensor 不支持 float64 数值类型,所以这里显示指定了 ndarray 的数值类型

a = mge.tensor(np.random.random((2,5)).astype('float32'))

print(a)

# 初始化一个长度为3的列表,并转化成 Tensor

b = mge.tensor([1., 2., 3.])

print(b)

Tensor([[0.2397 0.6569 0.8097 0.3523 0.4676]

[0.9492 0.9415 0.5636 0.614  0.8424]], device=xpux:0)

Tensor([1. 2. 3.], device=xpux:0)

通过 dtype 属性,可以获取 Tensor 的数据类型;通过 astype() 方法,可以拷贝创建一个指定数据类型的新 Tensor ,原 Tensor 不变。

In [2]:

print(a.dtype)

d = a.astype("float16")

print(d.dtype)

<class 'numpy.float32'>

<class 'numpy.float16'>

通过 shape 属性,可以获取 Tensor 的形状:

In [3]:

print(a.shape)

(2, 5)

通过 numpy() 方法,可以将 Tensor 转换为 numpy.ndarray:

In [4]:

a = mge.tensor(np.random.random((2,5)).astype('float32'))

print(a)

b = a.numpy()

print(b)

Tensor([[0.8246 0.8447 0.3225 0.2583 0.6065]

[0.4701 0.594  0.1612 0.7749 0.0067]], device=xpux:0)

[[0.8246328  0.8447421  0.32254046 0.25825405 0.60646415]

[0.47006    0.59400123 0.16122891 0.77490866 0.0067136 ]]

通过 device 属性,可以查询当前 Tensor 所在的设备。创建的 Tensor 可以位于不同 device,这根据当前的环境决定。一般地,如果在创建 Tensor 时不指定 device,其 device 属性默认为 xpux,表示当前任意一个可用的设备。如果存在 GPU 则优先使用 GPU,否则为 CPU。

In [5]:

print(a.device)

xpux:0

也可以在创建 Tensor 时,指定 device 为 cpu0, cpu1, …, gpu0, gpu1, … ,也可以是 cpux 或 gpux,表示当前任意一个可用的 CPU 或 GPU。

通过 to() 方法可以在另一个 device 上生成当前 Tensor 的拷贝,比如将刚刚创建的 Tensor a 迁移到 CPU 上,再迁移到 GPU 上:

In [6]:

b = a.to("cpu0")

print(b.device)

cpu0:0

GPU CPU 切换

MegEngine 在 GPU 和 CPU 同时存在时默认使用 GPU 进行训练。用户可以调用 set_default_device() 来根据自身需求设置默认计算设备。

如下代码设置默认设备为 CPU:

In [7]:

import megengine as mge

# 默认使用 CPU

mge.set_default_device('cpux')

如下代码设置默认设备为GPU:

mge.set_default_device('gpux')

如果不想修改代码,用户也可通过环境变量 MGE_DEFAULT_DEVICE 来设置默认计算设备:

export MGE_DEFAULT_DEVICE='cpux'

export MGE_DEFAULT_DEVICE='gpux'

算子(Operator

MegEngine 中通过算子 (Operator) 来表示运算。 类似于 NumPy,MegEngine 中的算子支持基于 Tensor 的常见数学运算和操作。 下面介绍几个简单的示例:

Tensor 的加法:

In [8]:

a = mge.tensor(np.random.random((2,5)).astype('float32'))

print(a)

b = mge.tensor(np.random.random((2,5)).astype('float32'))

print(b)

print(a + b)

Tensor([[0.1337 0.5079 0.0929 0.0834 0.7817]

[0.461  0.7906 0.81   0.6579 0.5813]], device=cpux:0)

Tensor([[0.8897 0.451  0.6765 0.3549 0.88  ]

[0.4421 0.7505 0.6881 0.9912 0.6448]], device=cpux:0)

Tensor([[1.0234 0.9589 0.7694 0.4383 1.6617]

[0.9031 1.5411 1.4981 1.6491 1.2261]], device=cpux:0)

Tensor 的切片:

In [9]:

print(a[1, :])

Tensor([0.461  0.7906 0.81   0.6579 0.5813], device=cpux:0)

Tensor 形状的更改:

In [10]:

a.reshape(5, 2)

Out[10]:

Tensor([[0.1337 0.5079]

[0.0929 0.0834]

[0.7817 0.461 ]

[0.7906 0.81  ]

[0.6579 0.5813]], device=cpux:0)

reshape() 的参数允许存在单个缺省值,用 -1 表示。此时,reshape 会自动推理该维度的值:

In [11]:

# 原始维度是 (2, 5),当给出 -1的缺省维度值时,可以推理出另一维度为10

a = a.reshape(1, -1)

print(a.shape)

(1, 10)

创建的Tensor可以位于不同device,这根据当前的环境决定。通过 device 属性查询当前 Tensor 所在的设备。

In [12]:

print(a.device)

cpux:0

以上是一些简单操作。 可以在 MegEngine API 文档中查询更多算子的用法,比如矩阵乘,卷积等。

求导器(Grad Manager

神经网络的优化通常通过随机梯度下降来进行。需要根据计算图的输出,对所有的中间数据节点求梯度,这一过程被称之为 “反向传播”,也就是链式求导法则。 例如,希望得到图1中输出 $ y $ 关于输入 $ w $ 的梯度,那么反向传播的过程如下图所示:

首先 $ y = p + b $ ,因此 $ \partial y / \partial p = 1 $ ; 接着,$ p = w * x $ ,因此,$ \partial p / \partial w = x $ 。 根据链式求导法则,$ \partial y / \partial w = \partial y / \partial p * \partial p / \partial w $ , 因此, $ y $ 关于输入 $ w $ 的梯度为 $ 1 * x = x $ 。

MegEngine 为计算图中的张量提供了自动求导功能,以上图的例子说明: 假设图中的 $ x $ 是 shape 为 (1, 3) 的张量, $ w $ 是 shape 为 (3, 1) 的张量, $ b $ 是一个标量。 利用MegEngine 计算 $ y = x * w + b $ 的过程如下:

In [13]:

import megengine as mge

import megengine.functional as F

from megengine.autodiff import GradManager

x = mge.tensor([1., 3., 5.]).reshape(1, 3)

w = mge.tensor([2., 4., 6.]).reshape(3, 1)

b = mge.tensor(-1.)

gm = GradManager().attach([w, b])   # 新建一个求导器,绑定需要求导的变量

with gm:                            # 开始记录计算图

p = F.matmul(x, w)

y = p + b

gm.backward(y)                  # 计算 y 的导数

print(w.grad)

print(b.grad)

Tensor([[1.]

[3.]

[5.]], device=cpux:0)

Tensor([1.], device=cpux:0)

可以看到,求出的梯度本身也是 Tensor。

with 代码段中的前向运算都会被求导器记录。也可以用 record() 和 release() 来替代 with,分别控制求导器的开启和关闭,代码如下所示。

gm = GradManager().attach([w, b])   # 新建一个求导器,绑定需要求导的变量

gm.record()                         # 开始记录计算图

p = F.matmul(x, w)

y = p + b

gm.backward(y)                      # 计算 y 的导数

gm.release()                        # 停止记录计算图并释放资源

此外,可以使用 detach 方法,把 Tensor 当作一个常量,这样求导器将不会对其求导。如下所示:

In [14]:

x = mge.tensor([1., 3., 5.]).reshape(1, 3)

w = mge.tensor([2., 4., 6.]).reshape(3, 1)

b = mge.tensor(-1.)

gm = GradManager().attach([w, b])   # 新建一个求导器,绑定需要求导的变量

with gm:                            # 开始记录计算图

p = F.matmul(x, w)

y = p + b.detach()              # 停止对 b 求导

gm.backward(y)                  # 计算 y 的导数

print(b.grad)

None

可以看到,梯度本身也是 Tensor。 注意:这里 F.grad() 的第一个参数 y 是个标量,目前尚不支持其为一个多维 Tensor。

MegEngine基本概念的更多相关文章

  1. 旷视MegEngine基本概念

    旷视MegEngine基本概念 MegEngine 是基于计算图的深度神经网络学习框架. 本文简要介绍计算图及其相关基本概念,以及它们在 MegEngine 中的实现. 计算图(Computation ...

  2. AIFramework基本概念整理

    AIFramework基本概念整理 本文介绍: 对天元 MegEngine 框架中的 Tensor, Operator, GradManager 等基本概念有一定的了解: 对深度学习中的前向传播.反向 ...

  3. Megengine量化

    Megengine量化 量化指的是将浮点数模型(一般是32位浮点数)的权重或激活值用位数更少的数值类型(比如8位整数.16位浮点数)来近似表示的过程. 量化后的模型会占用更小的存储空间,还能够利用许多 ...

  4. 旷视MegEngine网络搭建

    旷视MegEngine网络搭建 在 基本概念 中,介绍了计算图.张量和算子,神经网络可以看成一个计算图.在 MegEngine 中,按照计算图的拓扑结构,将张量和算子连接起来,即可完成对网络的搭建.M ...

  5. Fast Run:提高 MegEngine 模型推理性能的神奇功能

    作者:王博文 | 旷视 MegEngine 架构师 一.背景 对于深度学习框架来说,网络的训练/推理时间是用户非常看中的.在实际生产条件下,用户设计的 NN 网络是千差万别,即使是同一类数学计算,参数 ...

  6. MegEngine TensorCore 卷积算子实现原理

    作者:章晓 | 旷视 MegEngine 架构师 一.前言 2020 年 5 月 Nvidia 发布了新一代的 GPU 架构安培(Ampere).其中和深度学习关系最密切的莫过于性能强劲的第三代的 T ...

  7. JIT in MegEngine

    作者:王彪 | 旷视框架部异构计算组工程师 一.背景 什么是天元 旷视天元(MegEngine)是一个深度学习框架,它主要包含训练和推理两方面内容.训练侧一般使用 Python 搭建网络:而推理侧考虑 ...

  8. 如何设计一个高内聚低耦合的模块——MegEngine 中自定义 Op 系统的实践经验

    作者:褚超群 | 旷视科技 MegEngine 架构师 背景介绍 在算法研究的过程中,算法同学们可能经常会尝试定义各种新的神经网络层(neural network layer),比如 Layer No ...

  9. 如何一步一步用DDD设计一个电商网站(一)—— 先理解核心概念

    一.前言     DDD(领域驱动设计)的一些介绍网上资料很多,这里就不继续描述了.自己使用领域驱动设计摸滚打爬也有2年多的时间,出于对知识的总结和分享,也是对自我理解的一个公开检验,介于博客园这个平 ...

随机推荐

  1. system分区解锁

    前言 获取root权限,解锁system 步骤 手机设置 设置--更多设置--开发者选项--USB调试给打开 电脑操作 打开cmd adb devices 执行命令 adb root &&am ...

  2. featureCarousel.js 3d轮播图插件

    jQuery Feature Carousel 插件是国外的一比较优秀的旋转木马图片插件. 点击这里进入原文. 插件特点: 1.处理div的3d旋转木马效果. 2.支持一个中心,2个侧面的功能 3.中 ...

  3. Redhat中网络启动错误解决办法( Failed to start LSB: Bring up/down networking RTNETLINK answers: File exists)

    关于Redhat系列中网络启动失败的解决办法 报错: Failed to start LSB: Bring up/down networking.             RTNETLINK answ ...

  4. Django中的表单

    目录 表单 Django中的表单 用表单验证数据 自定义验证 表单 HTML中的表单是用来提交数据给服务器的,不管后台服务器用的是 Django  还是 PHP还是JSP还是其他语言.只要把 inpu ...

  5. Ubuntu Linux 学习篇 配置DNS服务器

    BIND9 DNS(Domain Name Server,域名服务器)是进行域名(domain name)和与之相对应的IP地址 (IP address)转换的服务器.DNS中保存了一张域名(doma ...

  6. 【python】Leetcode每日一题-设计停车系统

    [python]Leetcode每日一题-设计停车系统 [题目描述] 请你给一个停车场设计一个停车系统.停车场总共有三种不同大小的车位:大,中和小,每种尺寸分别有固定数目的车位. 请你实现 Parki ...

  7. C++入门教程之二:变量

    C++入门教程之二:变量 变量,顾名思义,意思是变化的量.变量的定义是计算机语言中能储存计算结果或能表示值的抽象概念.一个基本的程序需要变量,因此变量是程序设计中的一大重点. 变量基本结构 var_t ...

  8. Ping命令浅析

    Ping ​ Ping基于ICMP协议. ​ Ping可以分为 内网Ping 和 外网Ping ​ 下面以内网Ping为例,使用的软件是eNSP和WireShark ​ ​ Step1.创建拓扑,PC ...

  9. OO第一单元总结-多项式求导

    OO第一单元总结-多项式求导 一.第一.第二次作业总结 因为前两次作业设计复杂度差别不大,因而放在这里统一总结. 基于度量分析程序结构: 前两次作业确实存在缺乏可拓展设计的构想,基本还是面向过程的思维 ...

  10. ES 6 中的箭头函数及用法

    ES6标准新增了一种新的函数:Arrow Function(箭头函数). 主要的几种写法如下: 组成: 参数 => 语句, 参数不是1个: (参数,参数2)=>语句 语句不止一条: 参数 ...