Hive——环境搭建

相关hadoop和mysql环境已经搭建好。我博客中也有相关搭建的博客。

一、下载Hive并解压到指定目录(本次使用版本hive-1.1.0-cdh5.7.0,下载地址:http://archive.cloudera.com/cdh5/cdh/5/)

tar zxvf ./hive-1.1.0-cdh5.7.0.tar.gz -C ~/app/

二、Hive配置:参考官网:https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-InstallationandConfiguration

1、配置环境变量

1)vi .bash_profile

    export HIVE_HOME=/home/hadoop/app/hive-1.1.0-cdh5.7.0
export PATH=$HIVE_HOME/bin:$PATH

2)source .bash_profile

source .bash_profile

2、hive-1.1.0-cdh5.7.0/conf/hive-env.sh

1)cp hive-env.sh.template hive-env.sh

cp hive-env.sh.template hive-env.sh

2)vi hive-env.sh 添加HADOOP_HOME

    HADOOP_HOME=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0

3、hive-1.1.0-cdh5.7.0/conf/hive-site.xml(自己创建配置)

(mysql驱动包需要自己手动拷贝到hive-1.1.0-cdh5.7.0/lib中)。

 <configuration>
<!-- 配置连接串 -->
<property>
<name>javax.jdo.option.ConnectionURL</name>
<!-- 数据库名称:zhaotao_hive -->
<!-- createDatabaseIfNotExist=true:当数据库不存在的时候,自动帮你创建 -->
<value>jdbc:mysql://localhost:3306/rdb_hive?createDatabaseIfNotExist=true</value>
</property>
<!-- mysql的driver类 -->
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<!-- 用户名 -->
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<!-- 密码 -->
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>root</value>
</property>
</configuration>

三、启动hive

hive-1.1.0-cdh5.7.0/bin/hive

启动日志:

[hadoop@hadoop01 bin]$ ./hive
which: no hbase in (/home/hadoop/app/hive-1.1.0-cdh5.7.0/bin:/home/hadoop/app/hadoop-2.6.0-cdh5.7.0
/bin:/home/hadoop/app/jdk1.8.0_131/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/hadoop/
.local/bin:/home/hadoop/bin)
Logging initialized using configuration in jar:file:/home/hadoop/app/hive-1.1.0-cdh5.7.0/lib/
hive-common-1.1.0-cdh5.7.0.jar!/hive-log4j.properties
WARNING: Hive CLI is deprecated and migration to Beeline is recommended.
hive>

启动后会自动在mysql库上建立数据库和表:

mysql> show tables;
+--------------------+
| Tables_in_rdb_hive |
+--------------------+
| CDS |
| DATABASE_PARAMS |
| DBS |
| FUNCS |
| FUNC_RU |
| GLOBAL_PRIVS |
| PARTITIONS |
| PART_COL_STATS |
| ROLES |
| SDS |
| SEQUENCE_TABLE |
| SERDES |
| SKEWED_STRING_LIST |
| TAB_COL_STATS |
| TBLS |
| VERSION |
+--------------------+

四、hive简单入门

使用hive实现wordcount。

1、创建表:create table hive_wordcount(context string);

hive> create table hive_wordcount(context string);
OK
Time taken: 1.203 seconds
hive> show tables;
OK
hive_wordcount
Time taken: 0.19 seconds, Fetched: 1 row(s)

2、导入数据:load data local inpath '/home/hadoop/data/hello.txt' into table hive_wordcount;

hive> load data local inpath '/home/hadoop/data/hello.txt' into table hive_wordcount;
Loading data to table default.hive_wordcount
Table default.hive_wordcount stats: [numFiles=1, totalSize=44]
OK
Time taken: 2.294 seconds

3、查询表数据看是否导成功:select * from hive_wordcount;

hello.txt内容:

Deer Bear River
Car Car River
Deer Car Bear
hive> select * from hive_wordcount;
OK
Deer Bear River
Car Car River
Deer Car Bear
Time taken: 0.588 seconds, Fetched: 3 row(s)

4、使用sql实现wordcount:select word,count(1) from hive_wordcount lateral view explode(split(context,' ')) wc as word group by word;

hive> select word,count(1) from hive_wordcount lateral view explode(split(context,' ')) wc as
word group by word;
Query ID = hadoop_20180904070404_b23d8c2e-161b-4e65-a2cc-206ce343d9e8
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1536010835653_0002,
Kill Command = /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/bin/hadoop job -kill job_1536010835653_0002
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-09-04 07:05:49,279 Stage-1 map = 0%, reduce = 0%
2018-09-04 07:06:01,893 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.95 sec
2018-09-04 07:06:10,804 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.44 sec
MapReduce Total cumulative CPU time: 3 seconds 440 msec
Ended Job = job_1536010835653_0002
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.44 sec HDFS Read: 8797 HDFS
Write: 28 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 440 msec
OK
Bear 2
Car 3
Deer 2
River 2
Time taken: 37.441 seconds, Fetched: 4 row(s)

可以看到结果:

Bear    2
Car 3
Deer 2
River 2

注意:在创建表的时候遇到一个错误:

Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:
For direct MetaStore DB connections, we don't support retries at the client level.)

从字面意思是是连接msql有问题。从网上查询大概有两种解决办法:

1、换mysql jdbc驱动包,比如换成  mysql-connector-java-5.1.34-bin.jar,但我试过,我这里没有解决

2、换对应mysq 上MetaStore 数据库的编码,换成 latin1,亲测,解决。

Hive——环境搭建的更多相关文章

  1. 《OD大数据实战》Hive环境搭建

    一.搭建hadoop环境 <OD大数据实战>hadoop伪分布式环境搭建 二.Hive环境搭建 1. 准备安装文件 下载地址: http://archive.cloudera.com/cd ...

  2. 《Programming Hive》读书笔记(一)Hadoop和hive环境搭建

    <Programming Hive>读书笔记(一)Hadoop和Hive环境搭建             先把主要的技术和工具学好,才干更高效地思考和工作.   Chapter 1.Int ...

  3. Hive环境搭建

    hive 环境搭建需要hadoop的环境.hadoop环境的搭建不在这里赘述.参考:http://www.cnblogs.com/parkin/p/6952370.html 1.准备阶段 hive 官 ...

  4. Spark环境搭建(四)-----------数据仓库Hive环境搭建

    Hive产生背景 1)MapReduce的编程不便,需通过Java语言等编写程序 2) HDFS上的文缺失Schema(在数据库中的表名列名等),方便开发者通过SQL的方式处理结构化的数据,而不需要J ...

  5. Hadoop生态圈-Hive快速入门篇之Hive环境搭建

    Hadoop生态圈-Hive快速入门篇之Hive环境搭建 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据仓库(理论性知识大多摘自百度百科) 1>.什么是数据仓库 数据 ...

  6. Hive环境搭建和SparkSql整合

    一.搭建准备环境 在搭建Hive和SparkSql进行整合之前,首先需要搭建完成HDFS和Spark相关环境 这里使用Hive和Spark进行整合的目的主要是: 1.使用Hive对SparkSql中产 ...

  7. elasticsearch + hive环境搭建

    一.环境介绍: elasticsearch:2.3.1 hive:0.12 二.环境搭建 2.1 首先获取elasticsearc-hadoop的jar包 链接地址:http://jcenter.bi ...

  8. 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)

    引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...

  9. Mac上Hive环境搭建

    本文介绍在Mac上搭建Hive环境. 建议首先配置好Hadoop,搭建与配置可以参考我之前的博文Mac Hadoop的安装与配置. 当然你也可以选择使用Docker搭建环境,本文不作介绍. 安装 对于 ...

随机推荐

  1. AMD–7nm “Rome”芯片SOC体系结构,支持64核

    AMD–7nm "Rome"芯片SOC体系结构,支持64核 AMD Fully Discloses Zeppelin SOC Architecture Details at ISS ...

  2. 如何使用Nsight System?

    如何使用Nsight System?

  3. Jmeter(五十一) - 从入门到精通高级篇 - jmeter之运动战(详解教程)

    1.简介 运动战是一种军事作战方式,依托较大的作战空间来换取时间移动兵力包围敌方,以优势兵力速战速决,运动战的运用归为这样一段话"避敌主力,诱敌深入,集中优势兵力逐个击破".今天宏 ...

  4. Springboot-Redis分布式锁 -----StringRedisTemplate

    这里引用别人, 用来自己回忆 https://blog.csdn.net/jack_shuai/article/details/91986690 https://www.cnblogs.com/mox ...

  5. 四、配置及使用Zabbix监控系统

    要求: 沿用练习- - -,使用Zabbix监控平台监控Linux服务器,实现以下目标:1.监控CPU2.监控内存3.监控进程4.监控网络流量5.监控硬盘 方案:通过Zabbix监控平台,添加被监控z ...

  6. 一篇文章带你搞懂 etcd 3.5 的核心特性

    作者 唐聪,腾讯云资深工程师,极客时间专栏<etcd实战课>作者,etcd活跃贡献者,主要负责腾讯云大规模k8s/etcd平台.有状态服务容器化.在离线混部等产品研发设计工作. etcd ...

  7. 【VBA】查找字符串

    老婆饼里有老婆吗 Sub test() aaa = "老婆饼里有老婆吗" If InStr(aaa, "老婆") <> 0 Then Debug.p ...

  8. SpringBoot和Spring到底有没有本质的不同?

    现在的Spring相关开发都是基于SpringBoot的.最后在打包时可以把所有依赖的jar包都打进去,构成一个独立的可执行的jar包.如下图: 使用java -jar命令就可以运行这个独立的jar包 ...

  9. 无需会员将有道云笔记脑图转换xmind

    我的烦恼 有道云笔记有脑图功能,我平时经常用到,之所以很少用到其他脑图工具,是因为我一直用有道云笔记写笔记.因此编辑脑图和查看脑图比较方便,但是需要将脑图导出的时候目前只支持图片和xmind,但是需要 ...

  10. Map类型的Json格式

    示例代码: Map<String, Object> map = new HashMap<>();// boolean 类型 map.put("boolean" ...