CF1092F Tree with Maximum Cost(dfs+dp)
果然我已经菜到被\(div3\)的题虐哭了
qwq
首先看到这个题,一个比较显然的想法就是先从1号点开始\(dfs\)一遍,然后通过一些奇怪的方式,再\(dfs\)一遍得到其他点的贡献。
那么具体应该这么做呢。
首先,我们维护两个数组\(dis[i]\)表示\(i\)到1的距离,\(sum[i]\)表示\(i\)的子树中的\(val\)的和。
然后我们考虑,如果从\(fa[x]\)移动到\(x\),相当于\(x\)的子树内的\(dis\)都要减一,对\(ans\)的贡献是\(-sum[x]\),然后\(x\)的子树外面的所有的点的\(dis\)要加一,对\(ans\)的贡献是\(sum[1]-sum[x]\)。
那么我们只需要两遍\(dfs\),第二遍\(dfs\),一边\(dfs\)一边更新\(ans\)就好。
#include<bits/stdc++.h>
#define mk make_pair
#define pb push_back
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 4e5+1e2;
const int maxm = 2*maxn;
int point[maxn],nxt[maxm],to[maxm];
int dis[maxn],sum[maxn];
int ans;
int n,m,cnt;
int tmp;
int val[maxn];
void addedge(int x,int y)
{
nxt[++cnt]=point[x];
to[cnt]=y;
point[x]=cnt;
}
void dfs(int x,int fa,int dep)
{
sum[x]=val[x];
dis[x]=dep;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if(p==fa) continue;
dfs(p,x,dep+1);
sum[x]+=sum[p];
}
}
void solve(int x,int fa,int now)
{
ans=max(ans,now);
for (int i=point[x];i;i=nxt[i])
{
int p=to[i];
if (p==fa) continue;
solve(p,x,now+sum[1]-sum[p]-sum[p]);
}
}
signed main()
{
n=read();
for (int i=1;i<=n;i++) val[i]=read();
for (int i=1;i<n;i++)
{
int x=read(),y=read();
addedge(x,y);
addedge(y,x);
}
dfs(1,0,0);
for (int i=1;i<=n;i++) tmp=tmp+dis[i]*val[i];
ans=tmp;
//cout<<ans<<endl;
solve(1,0,tmp);
cout<<ans;
return 0;
}
CF1092F Tree with Maximum Cost(dfs+dp)的更多相关文章
- Codeforces 1092F Tree with Maximum Cost(树形DP)
题目链接:Tree with Maximum Cost 题意:给定一棵树,树上每个顶点都有属性值ai,树的边权为1,求$\sum\limits_{i = 1}^{n} dist(i, v) \cdot ...
- Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】
传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...
- 2018.12.19 codeforces 1092F. Tree with Maximum Cost(换根dp)
传送门 sbsbsb树形dpdpdp题. 题意简述:给出一棵边权为1的树,允许选任意一个点vvv为根,求∑i=1ndist(i,v)∗ai\sum_{i=1}^ndist(i,v)*a_i∑i=1n ...
- CF1092 --- Tree with Maximum Cost
CF1324 --- Maximum White Subtree 题干 You are given a tree consisting exactly of \(n\) vertices. Tree ...
- CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。
题目意思: 给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大.输出最大的值. ...
- Codeforces Round #527 F - Tree with Maximum Cost /// 树形DP
题目大意: 给定一棵树 每个点都有点权 每条边的长度都为1 树上一点到另一点的距离为最短路经过的边的长度总和 树上一点到另一点的花费为距离乘另一点的点权 选定一点出发 使得其他点到该点的花费总和是最大 ...
- Codeforces 1092 F Tree with Maximum Cost (换根 + dfs)
题意: 给你一棵无根树,每个节点有个权值$a_i$,指定一个点u,定义$\displaystyle value = \sum^v a_i*dist(u,v)$,求value的最大值 n,ai<= ...
- Is It A Tree?(并查集)(dfs也可以解决)
Is It A Tree? Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submi ...
- HDU1078 FatMouse and Cheese(DFS+DP) 2016-07-24 14:05 70人阅读 评论(0) 收藏
FatMouse and Cheese Problem Description FatMouse has stored some cheese in a city. The city can be c ...
随机推荐
- SpringBoot应用中使用AOP记录接口访问日志
SpringBoot应用中使用AOP记录接口访问日志 本文主要讲述AOP在mall项目中的应用,通过在controller层建一个切面来实现接口访问的统一日志记录. AOP AOP为Aspect Or ...
- Linux centos7 nginx 平滑升级
2021-08-19为了方便读者的阅读,该文通篇使用绝对路径,各位朋友们在实际上操作中可以根据实际情况编写路径(#^.^#)1. 当前环境 # system cat /etc/redhat-relea ...
- 机器学习之支持向量机(python)
参考链接:https://blog.csdn.net/weixin_33514582/article/details/113321749.https://blog.csdn.net/weixin_44 ...
- Python - 头部解析
背景 写 python 的时候,基本都要加两个头部注释,这到底有啥用呢? #!usr/bin/env python # -*- coding:utf-8 _*- print("hello-w ...
- 关于Golang的学习路线
基础 安装golang环境 Golang基础,流程控制,函数,方法,面向对象 网络编程(自己做一个简单的tcp的聊天室,websocket,http,命令行工具) 并发(可以看一下并发爬虫或者下载器的 ...
- 口护万亿市场杀出的实力派 Oclean欧可林
撰文 |懂懂 编辑 | 秦言 来源:懂懂笔记 在"青年必去的电影节"上,发现了一个跟他们打成一片的智能护齿"新星". 25日,备受关注的第15届FIRST青年电 ...
- JAVA反序列化的简单探究
JAVA反序列化的简单探究 本文主要是探究,在反序列化过程中是怎么调用到readObject.readResolve.readExternal方法的问题 新建一个需要被序列化的类ObjectA,写入r ...
- call、apply、bind三者比较
var obj={a:1}; var foo={ getA:function(item1,item2){ return this.a+item1+item2 } } // apply绑定参数为数组,一 ...
- 谈谈Linux系统启动流程
@ 目录 大体流程分析 一.BIOS 1.1 BIOS简介 1.2 POST 二.BootLoader (GRUB) 2.1 What's MBR? 2.2 What's GRUB? 2.3 boot ...
- 1.Java 基础
1. JDK 和 JRE 有什么区别? jdk:开发工具包,jre:java运行环境 jdk包含了jre和java开发环境,如编译java源码的编译器javac,还包含了许多java程序调试和分析的工 ...