前情提示:Go语言学习者。本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正

关于golang算法文章,为了便于下载和整理,都已开源放在:

方便的话,请分享,star!备注转载地址!欢迎一起学习和交流!

涉及题目

Leetcode 76. 最小覆盖子串

Leetcode 567.字符串的排列

Leetcode 438.找到字符串中所有字母异位词

Leetcode 3.无重复字符的最长子串

鉴于前文 [二分搜索框架详解] 的那首《二分搜索升天词》很受好评,并在民间广为流传,成为安睡助眠的一剂良方,今天在滑动窗口算法框架中,我再次编写一首小诗来歌颂滑动窗口算法的伟大:

关于双指针的快慢指针和左右指针的用法,可以参见前文 双指针技巧套路框架,本文就解决一类最难掌握的双指针技巧:滑动窗口技巧。总结出一套框架,可以保你闭着眼睛都能写出正确的解法。

说起滑动窗口算法,很多读者都会头疼。这个算法技巧的思路非常简单,就是维护一个窗口,不断滑动,然后更新答案么。LeetCode 上有起码 10 道运用滑动窗口算法的题目,难度都是中等和困难。该算法的大致逻辑如下:

left := 0
right := 0
for right < len(s){
// 增大窗口
window = append(window, s[right])
right++ for window needs shrink{
// 缩小窗口
window.remove(s[left]) // 伪码
left++
}
}

这个算法技巧的时间复杂度是 O(N),比字符串暴力算法要高效得多。

其实困扰大家的,不是算法的思路,而是各种细节问题。比如说如何向窗口中添加新元素,如何缩小窗口,在窗口滑动的哪个阶段更新结果。即便你明白了这些细节,也容易出 bug,找 bug 还不知道怎么找,真的挺让人心烦的。

所以今天我就写一套滑动窗口算法的代码框架,我连再哪里做输出 debug 都给你写好了,以后遇到相关的问题,你就默写出来如下框架然后改三个地方就行,还不会出 bug

// 滑动窗口算法框架
func slidingWindow(s string, t string){
need, window := map[byte]int{}, map[byte]int{} // go中无char.还有注意不能只声明,不创建
for i:=0;i<len(t);i++{ // 使用range遍历得到是rune,使用t[i]得到的是byte
need[t[i]]++ // map[key]访问哈希表中键对应的值。如果key不存在,自动创建这个key,并把map[key]赋值为0
}
left := 0
right := 0
valid := 0
for right < len(s){
// c是将移入窗口的字符
c := s[right]
// 右移窗口
right++
// 进行窗口内数据的一系列更新
... // debug输出的位置
fmt.Print("windows: [%d,%d]\n",left,right)
// // 判断左侧窗口是否要收缩
for window needs shrink{
// d是将一处窗口的字符
d := s[left]
// 左移窗口
left++
// 进行窗口内数据的一系列更新
...
}
}
}

其中两处 ... 表示的更新窗口数据的地方,到时候你直接往里面填就行了

而且,这两个 ... 处的操作分别是右移和左移窗口更新操作,等会你会发现它们操作是完全对称的。

说句题外话,我发现很多人喜欢执着于表象,不喜欢探求问题的本质。比如说有很多人评论我这个框架,说什么散列表速度慢,不如用数组代替散列表;还有很多人喜欢把代码写得特别短小,说我这样代码太多余,影响编译速度,LeetCode 上速度不够快。

我服了。算法看的是时间复杂度,你能确保自己的时间复杂度最优,就行了。至于 LeetCode 所谓的运行速度,那个都是玄学,只要不是慢的离谱就没啥问题,根本不值得你从编译层面优化,不要舍本逐末……

本文重点在于算法思想,你把框架思维了然于心,然后随你魔改代码好吧,你高兴就好。

言归正传,下面就直接上四道 LeetCode 原题来套这个框架,其中第一道题会详细说明其原理,后面四道就直接闭眼睛秒杀了。

因为滑动窗口很多时候都是在处理字符串相关的问题,Java 处理字符串不方便,原始参考文章使用C++实现,但本文代码为 Go 实现。不会用到什么编程方面的奇技淫巧,但是还是简单介绍一下一些用到的数据结构,以免有的读者因为语言的细节问题阻碍对算法思想的理解:

go的map实现方式和C++中unordered_map一样,都是哈希表(字典),Go和C++可以使用方括号访问键对应的值 map[key]。需要注意的是,如果该 key 不存在,Go和C++ 会自动创建这个 key,并把 map[key] 赋值为 0。

所以代码中多次出现的 map[key]++ 相当于 Java 的 map.put(key, map.getOrDefault(key, 0) + 1)

一、最小覆盖子串

题目不难理解,就是说要在 S(source) 中找到包含 T(target) 中全部字母的一个子串,顺序无所谓,但这个子串一定是所有可能子串中最短的。

如果我们使用暴力解法,代码大概是这样的:

for i:=0; i<len(s);i++{
for j:=i+1; j<len(s);j++{
if s[i:j]包含t的所有字母:
更新答案
}
}

思路很直接,但是显然,这个算法的复杂度肯定大于 O(N^2) 了,不好。

滑动窗口算法的思路是这样

1、我们在字符串 S 中使用双指针中的左右指针技巧,初始化 left = right = 0,把索引左闭右开区间 [left, right) 称为一个「窗口」。

2、我们先不断地增加 right 指针扩大窗口 [left, right),直到窗口中的字符串符合要求(包含了 T 中的所有字符)。

3、此时,我们停止增加 right,转而不断增加 left 指针缩小窗口 [left, right),直到窗口中的字符串不再符合要求(不包含 T 中的所有字符了)。同时,每次增加 left,我们都要更新一轮结果。

4、重复第 2 和第 3 步,直到 right 到达字符串 S 的尽头。

这个思路其实也不难,第 2 步相当于在寻找一个「可行解」,然后第 3 步在优化这个「可行解」,最终找到最优解,也就是最短的覆盖子串。左右指针轮流前进,窗口大小增增减减,窗口不断向右滑动,这就是「滑动窗口」这个名字的来历。

下面画图理解一下,needswindow 相当于计数器,分别记录 T 中字符出现次数和「窗口」中的相应字符的出现次数。

初始状态:

增加 right,直到窗口 [left, right] 包含了 T 中所有字符:

现在开始增加 left,缩小窗口 [left, right]

直到窗口中的字符串不再符合要求,left 不再继续移动:

之后重复上述过程,先移动 right,再移动 left…… 直到 right 指针到达字符串 S 的末端,算法结束。

如果你能够理解上述过程,恭喜,你已经完全掌握了滑动窗口算法思想。现在我们来看看这个滑动窗口代码框架怎么用

首先,初始化 windowneed 两个哈希表,记录窗口中的字符和需要凑齐的字符:

var need,window map[char]int
for _,c := range t{
need[c]++
}

然后,使用 leftright 变量初始化窗口的两端,不要忘了,区间 [left, right) 是左闭右开的,所以初始情况下窗口没有包含任何元素:

left := 0
right := 0
valid := 0
for right < len(s){
// 开始滑动
}

其中 valid 变量表示窗口中满足 need 条件的字符个数,如果 validneed.size 的大小相同,则说明窗口已满足条件,已经完全覆盖了串 T

现在开始套模板,只需要思考以下四个问题

1、当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?

2、什么条件下,窗口应该暂停扩大,开始移动 left 缩小窗口?

3、当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?

4、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

如果一个字符进入窗口,应该增加 window 计数器;如果一个字符将移出窗口的时候,应该减少 window 计数器;当 valid 满足 need 时应该收缩窗口;应该在收缩窗口的时候更新最终结果。

下面是完整代码:

func minWindow(s string, t string) string{
need, window := map[byte]int{}, map[byte]int{} // go中无char.还有注意不能只声明,不创建
for i:=0;i<len(t);i++{ // 使用range遍历得到是rune,使用t[i]得到的是byte
need[t[i]]++
} left := 0
right := 0
valid := 0
// 记录最小覆盖子串的起始索引及长度
start := 0
temp := math.MaxInt32 // 保存长度
for right < len(s){
// c是将移入窗口的字符
c := s[right]
// 右移窗口
right++
// 进行窗口内数据的一系列更新
if need[c]!=0{
window[c]++
if window[c] == need[c]{
valid++
}
}
// 判断左侧窗口是否要收缩
for valid == len(need){
// 在这里更新最小覆盖字串
if right - left < temp{
start = left
temp = right - left
}
// d是将移除窗口的字符
d := s[left]
// 左移窗口
left++
// 进行窗口内数据的一系列更新
if need[d]!=0{
if window[d]==need[d]{
valid--
}
window[d]--
}
}
}
// 返回最小覆盖字串
if temp == math.MaxInt32{
return ""
}else{
return s[start:start+temp]
}
}

PS:使用 Java 的读者要尤其警惕语言特性的陷阱。Java 的 Integer,String 等类型判定相等应该用 equals 方法而不能直接用等号 ==,这是 Java包装类的一个隐晦细节。所以在左移窗口更新数据的时候,不能直接改写为 window.get(d) == need.get(d),而要用 window.get(d).equals(need.get(d)),之后的题目代码同理。

需要注意的是,当我们发现某个字符在 window 的数量满足了 need 的需要,就要更新 valid,表示有一个字符已经满足要求。而且,你能发现,两次对窗口内数据的更新操作是完全对称的。

valid == need.size() 时,说明 T 中所有字符已经被覆盖,已经得到一个可行的覆盖子串,现在应该开始收缩窗口了,以便得到「最小覆盖子串」。

移动 left 收缩窗口时,窗口内的字符都是可行解,所以应该在收缩窗口的阶段进行最小覆盖子串的更新,以便从可行解中找到长度最短的最终结果。

至此,应该可以完全理解这套框架了,滑动窗口算法又不难,就是细节问题让人烦得很。以后遇到滑动窗口算法,你就按照这框架写代码,保准没有 bug,还省事儿

下面就直接利用这套框架秒杀几道题吧,你基本上一眼就能看出思路了。

二、字符串排列

LeetCode 567 题,Permutation in String,难度 Medium:

注意哦,输入的 s1 是可以包含重复字符的,所以这个题难度不小。

这种题目,是明显的滑动窗口算法,相当给你一个 S 和一个 T,请问你 S 中是否存在一个子串,包含 T 中所有字符且不包含其他字符

首先,先复制粘贴之前的算法框架代码,然后明确刚才提出的 4 个问题,即可写出这道题的答案:

// 滑动窗口算法框架——判断s中是否存在t的排列
func checkInclusion(t string, s string) bool{
need, window := map[byte]int{}, map[byte]int{} // go中无char.还有注意不能只声明,不创建
for i:=0;i<len(t);i++{ // 使用range遍历得到是rune,使用t[i]得到的是byte
need[t[i]]++ // map[key]访问哈希表中键对应的值。如果key不存在,自动创建这个key,并把map[key]赋值为0
}
left := 0
right := 0
valid := 0
for right < len(s){
// c是将移入窗口的字符
c := s[right]
// 右移窗口
right++
// 进行窗口内数据的一系列更新【关键】
if need[c]!=0{
window[c]++
if window[c]==need[c]{
valid++
}
} // 判断左侧窗口是否要收缩
for right - left >= len(t){
// 在这里判断是否找到合法的字串【关键】
if valid == len(need){
return true
}
// d是将一处窗口的字符
d := s[left]
// 左移窗口
left++
// 进行窗口内数据的一系列更新【关键】
if need[d]!=0{
if window[d] == need[d]{
valid--
}
window[d]--
}
}
}
// 未找到符合条件的子串
return false
}

对于这道题的解法代码,基本上和最小覆盖子串一模一样,只需要改变两个地方:

1、本题移动 left 缩小窗口的时机是窗口大小大于 t.size() 时,应为排列嘛,显然长度应该是一样的。

2、当发现 valid == need.size() 时,就说明窗口中就是一个合法的排列,所以立即返回 true

至于如何处理窗口的扩大和缩小,和最小覆盖子串完全相同。

三、找所有字母异位词

这是 LeetCode 第 438 题,Find All Anagrams in a String,难度 Medium:

呵呵,这个所谓的字母异位词,不就是排列吗,搞个高端的说法就能糊弄人了吗?相当于,输入一个串 S,一个串 T,找到 S 中所有 T 的排列,返回它们的起始索引

直接默写一下框架,明确刚才讲的 4 个问题,即可秒杀这道题:

// 滑动窗口算法框架——找所有字母异位词
func findAnagrams(s string, t string) []int{
need, window := map[byte]int{}, map[byte]int{} // go中无char.还有注意不能只声明,不创建
for i:=0;i<len(t);i++{ // 使用range遍历得到是rune,使用t[i]得到的是byte
need[t[i]]++ // map[key]访问哈希表中键对应的值。如果key不存在,自动创建这个key,并把map[key]赋值为0
}
left := 0
right := 0
valid := 0
res := []int{} // 【重要】
for right < len(s){
// c是将移入窗口的字符
c := s[right]
// 右移窗口
right++
// 进行窗口内数据的一系列更新【重要】
if need[c]!=0{
window[c]++
if window[c] == need[c]{
valid++
}
} // 判断左侧窗口是否要收缩
for right - left >= len(t){
// 窗口符合条件时,将起始索引加入res【重要】
if valid == len(need){
res = append(res, left)
}
// d是将一处窗口的字符
d := s[left]
// 左移窗口
left++
// 进行窗口内数据的一系列更新【重要】
if need[d]!=0{
if window[d] == need[d]{
valid--
}
window[d]--
}
}
}
return res
}

跟寻找字符串的排列一样,只是找到一个合法异位词(排列)之后将起始索引加入 res 即可。

四、最长无重复子串

这是 LeetCode 第 3 题,Longest Substring Without Repeating Characters,难度 Medium:

这个题终于有了点新意,不是一套框架就出答案,不过反而更简单了,稍微改一改框架就行了:

// 滑动窗口算法框架——最长无重复子串
func lengthOfLongestSubstring(s string) int{
window := map[byte]int{} // go中无char.还有注意不能只声明,不创建
left := 0
right := 0
res := 0 // 记录结果
for right < len(s){
// c是将移入窗口的字符
c := s[right]
// 右移窗口
right++
// 进行窗口内数据的一系列更新【重要】
window[c]++ // 判断左侧窗口是否要收缩
for window[c]>1{
// d是将一处窗口的字符
d := s[left]
// 左移窗口
left++
// 进行窗口内数据的一系列更新【重要】
window[d]--
}
// 在这里更新答案[重要]
if res < right-left{
res = right -left
}
}
return res
}

这就是变简单了,连 needvalid 都不需要,而且更新窗口内数据也只需要简单的更新计数器 window 即可。

window[c] 值大于 1 时,说明窗口中存在重复字符,不符合条件,就该移动 left 缩小窗口了嘛。

唯一需要注意的是,在哪里更新结果 res 呢?我们要的是最长无重复子串,哪一个阶段可以保证窗口中的字符串是没有重复的呢?

这里和之前不一样,要在收缩窗口完成后更新 res,因为窗口收缩的 while 条件是存在重复元素,换句话说收缩完成后一定保证窗口中没有重复嘛。

五、最后总结

建议背诵并默写这套框架,顺便背诵一下文章开头的那首诗。以后就再也不怕子串、子数组问题了好吧。

7、滑动窗口套路算法框架——Go语言版的更多相关文章

  1. 5、双指针技巧套路框架——Go语言版

    前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在 ...

  2. 第二十四个知识点:描述一个二进制m组的滑动窗口指数算法

    第二十四个知识点:描述一个二进制m组的滑动窗口指数算法 简单回顾一下我们知道的. 大量的密码学算法的大数是基于指数问题的安全性,例如RSA或者DH算法.因此,现代密码学需要大指数模幂算法的有效实现.我 ...

  3. 排序算法总结(C语言版)

    排序算法总结(C语言版) 1.    插入排序 1.1     直接插入排序 1.2     Shell排序 2.    交换排序 2.1     冒泡排序 2.2     快速排序 3.    选择 ...

  4. 3、回溯算法解题套路框架——Go语言版

    前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在 ...

  5. 4、BFS算法套路框架——Go语言版

    前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在 ...

  6. 2、动态规划接替套路框架——Go语言版

    前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在 ...

  7. 和我一起从0学算法(C语言版)(一)

    第一章 排序 第一节 简化版桶排法 友情提示:此文章分享给所有小白,大牛请绕路! 生活中很多地方需要使用排序,价格的由低到高.距离的由远及近等,都是排序问题的体现.如果排序量较少,依靠个人能力很容易实 ...

  8. 最短路径-----迪杰斯特拉算法(C语言版)

    原文:http://blog.csdn.net/mu399/article/details/50903876 转两张思路图非常好:   描述略   图片思路很清晰.  Dijkstra不适用负权值,负 ...

  9. [算法] 常见排序算法总结(C语言版)

    常见排序算法总结 本文对比较常用且比较高效的排序算法进行了总结和解析,并贴出了比较精简的实现代码,包括选择排序.插入排序.归并排序.希尔排序.快速排序等.算法性能比较如下图所示: 1 冒泡排序 基本原 ...

随机推荐

  1. Topcoder 14719 - RatingProgressAward(最小割)

    题面传送门 神仙最小割--好久没写过网络流了,故写题解以祭之( 首先考虑一个非常 trivial 的问题:如果知道排列顺序之后怎样计算最大值,用脚趾头想一下就能知道是原序列的最大子段和,因为每个课程之 ...

  2. Vue 中使用 TypeScript 详细总结

    VUE 项目中使用 Typescript 第一节:项目起步 Vue 中使用 TypeScript 项目中主要使用到的第三方依赖 vue2 vue-class-component vue-propert ...

  3. 【豆科基因组】大豆(Soybean, Glycine max)经典文章梳理2010-2020

    目录 2010年1月:大豆基因组首次发表(Nature) 2010年12月:31个大豆基因组重测序(Nature Genetics) 2014年10月:野生大豆泛基因组(Nature Biotechn ...

  4. CentOS6.9安装python3

    安装依赖包: yum install -y openssl-devel bzip2-devel expat-devel gdbm-devel readline-devel sqlite-devel w ...

  5. R语言因子排序

    画图的时候,排序是个很重要的技巧,比如有时候会看下基因组每条染色体上的SNP的标记数量,这个时候直接做条形图是一种比较直观的方法,下面我们结合实际例子来看下: 在R环境下之际构建一个数据框,一列染色体 ...

  6. nginx_rewrite

    介绍: 和apache等web服务软件一样,rewrite的组要功能是实现RUL地址的重定向.Nginx的rewrite功能需要PCRE软件的支持,即通过perl兼容正则表达式语句进行规则匹配的.默认 ...

  7. 硬盘SSD、HDD和SSHD都是什么意思?哪种类型硬盘最好?

    硬盘分类:(1)HHD 机械硬盘(Mechanical hard disk)(2)SSD 固态硬盘(solid state drive/disk)(3)SSHD 混合硬盘,说白了就是HDD+SSD=S ...

  8. lsof之列出已打开的文件

    lsof命令常用解析 Linux中常用 lsof 来查看文件调用进程等相关信息,也可用来查看活跃的进程信息和端口监听进程信息等 1. lsof 命令介绍 NAME lsof - list open f ...

  9. 使用flock命令查看nas存储是否支持文件锁

    上锁 文件锁有两种 shared lock 共享锁 exclusive lock 排他锁 当文件被上了共享锁之后,其他进程可以继续为此文件加共享锁,但此文件不能被加排他锁,此文件会有一个共享锁计数,加 ...

  10. 日常Java测试第二段 2021/11/12

    第二阶段 package word_show; import java.io.*;import java.util.*;import java.util.Map.Entry; public class ...