A. Extreme Subtraction

把这个数组差分一下,发现操作一的作用是把 \(d_1\) 的大小分给 \(d_i\),而操作二的作用是把 \(d_i\) 减去任意值,目标是把 \(d\) 的值都变为 \(0\)。对于 \(d\) 中大于 \(0\) 的值,就直接用操作二就行了;对于小于 \(0\) 的值,那它只能用 \(d_1\) 补偿;所以就比较一下 \(b_1\) 和 \(- \sum\limits_{i=2}^n[b_i<0]\times b_i\)的大小就行了。

B. Identify the Operations

遍历 \(b\),找到 \(b_i\) 在 \(a\) 中的位置,那么只能删除它左边的那个或右边的那个;但假如左边那个是将来的 \(b\) 的话,那就不能删了;同时会发现,删左边和删右边对序列的影响都是一样的,都是从两个能删的数变成两个能删的数。那就很简单了。

fin >> n >> m;
int mn = 1e9 + 1e2, mx = -1e9 - 1e2, ans = 1;
for (int i = 1; i <= n; i++) fin >> a[i];
for (int i = 1; i <= m; i++) fin >> b[i];
for (int i = 1; i <= n; i++) pnt[a[i]] = i;
for (int i = 1; i <= n; i++) vis[i] = 0;
for (int i = 1; i <= m; i++) vis[pnt[b[i]]] = true;
vis[0] = vis[n + 1] = true;
for (int i = 1; i <= m; i++)
{
(ans *= 2 - vis[pnt[b[i]] - 1] - vis[pnt[b[i]] + 1]) %= mod;
vis[pnt[b[i]]] = false;
}
fout << ans << Endl;

C. Graph Transpositions

惯例分层图。但是分层图的深度特别大怎么办?我们发现,\(2^{18}\) 次方就已经大于 \(n\) 了,所以暂且只建这么 \(18\) 层。

如果这 \(18\) 能到,那就 OK 了。如果不能,那就有讲究了。我们发现这时我们的第一追求是层数少,然后才是这层内的距离近。所以我们可以一层一层拓展,就可以保证层数少。

这么做还是 \(O(n^2)\)的,还需要加上一个剪枝——若当前点在以前的层中已经访问,那就不用再走它,于是复杂度就对了。还有就是 \(18\) 层以后的图上,存的 \(dis\) 就不用包括 \(2^k\) 次方了,就可以处理需要取模的最小值了。

D. Sum

神奇结论题:最多只有一列选了一部分,其他列要么全选要么不选。证明使用反证法就行了。这样问题就从多重背包变成了扣点一个点的 0/1 背包。这个问题可以使用分治或分块处理。

inline update(vector<u64>& f, int sze, u64 val) {
for (int i = k - sze; i >= 0; i--) {
f[i + sze] = max_(f[i + sze], f[i] + val);
}
} u64 ans; void solve(int l, int r, vector<u64> f)
{
if (l == r) {
for (int i = 0; i <= min_(k, m[l]); i++) {
ans = max_(ans, f[k - i] + a[l][i]);
}
return;
}
int mid = (l + r) >> 1; vector<u64> fl = f, fr = f;
for (int i = l; i <= mid; i++) update(fr, m[i], a[i][m[i]]);
for (int i = r; i > mid; i--) update(fl, m[i], a[i][m[i]]);
solve(l, mid, fl); solve(mid + 1, r, fr);
}

Codeforces Round #681 (Div. 1) Solution的更多相关文章

  1. Codeforces Round #466 (Div. 2) Solution

    从这里开始 题目列表 小结 Problem A Points on the line Problem B Our Tanya is Crying Out Loud Problem C Phone Nu ...

  2. 老年OIer的Python实践记—— Codeforces Round #555 (Div. 3) solution

    对没错下面的代码全部是python 3(除了E的那个multiset) 题目链接:https://codeforces.com/contest/1157 A. Reachable Numbers 按位 ...

  3. Codeforces Round #545 (Div. 1) Solution

    人生第一场Div. 1 结果因为想D想太久不晓得Floyd判环法.C不会拆点.E想了个奇奇怪怪的set+堆+一堆乱七八糟的标记的贼难写的做法滚粗了qwq靠手速上分qwqqq A. Skyscraper ...

  4. Codeforces Round 500 (Div 2) Solution

    从这里开始 题目地址 瞎扯 Problem A Piles With Stones Problem B And Problem C Photo of The Sky Problem D Chemica ...

  5. Codeforces Round #607 (Div. 1) Solution

    从这里开始 比赛目录 我又不太会 div 1 A? 我菜爆了... Problem A Cut and Paste 暴力模拟一下. Code #include <bits/stdc++.h> ...

  6. Codeforces Round #578 (Div. 2) Solution

    Problem A Hotelier 直接模拟即可~~ 复杂度是$O(10 \times n)$ # include<bits/stdc++.h> using namespace std; ...

  7. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final)【ABCDF】

    比赛链接:https://codeforces.com/contest/1443 A. Kids Seating 题意 构造一个大小为 \(n\) 的数组使得任意两个数既不互质也不相互整除,要求所有数 ...

  8. Codeforces Round #525 (Div. 2) Solution

    A. Ehab and another construction problem Water. #include <bits/stdc++.h> using namespace std; ...

  9. Codeforces Round #520 (Div. 2) Solution

    A. A Prank Solved. 题意: 给出一串数字,每个数字的范围是$[1, 1000]$,并且这个序列是递增的,求最多擦除掉多少个数字,使得别人一看就知道缺的数字是什么. 思路: 显然,如果 ...

随机推荐

  1. VMD可视化hdf5格式的分子坐标文件

    技术背景 VMD是分子动力学模拟领域常用的一款可视化软件,可以非常直观方便的展示分子的运动过程.而VMD本身对展现的格式有一定的要求,如果不是常见的rst等类型的坐标文件的话,就需要自己手动去实现一个 ...

  2. anaconda+pytorch安装

    环境配置说明: 因项目需要,需要写一个说明文档交付公司人员,指导其进行环境的安装 1. 安装 Anaconda 进入清华开源软件镜像站,其网址如下:https://mirrors.tuna.tsing ...

  3. UltraSoft - Alpha - Scrum Meeting 5

    Date: Apr q9th, 2020. Scrum 情况汇报 进度情况 组员 负责 昨日进度 后两日任务 CookieLau PM 统筹个人进度,协助推进进度 辅助前后端连接工作 刘zh 前端 完 ...

  4. [技术博客] 软工-Ruby on Rails 后端开发总结分享

    [技术博客] 软工-Ruby on Rails 后端开发总结分享 在这次软件编写中,我们的后端使用了Ruby on Rails (RoR)框架. Rails框架是用Ruby编写的.这意味着当我们为Ru ...

  5. Seata分布式事务失败通知

    一.背景 在我们使用Seata作为分布式事务时,有些时候我们的分布式时候并不是每次都可以成功的,而对于这些失败的分布式事务就需要进行通知.这篇文章简单记录一下如何实现通知. 二.功能实现 此处模拟邮件 ...

  6. Noip模拟7 2021.6.11

    前言 考试时候der展了,T1kmp没特判(看来以后还是能hash就hash),T2搜索细节没注意,ans没清零,130飞到14.... T1 匹配(hash/kmp) 这太水了,其实用个hash随便 ...

  7. C语言编程基础有网盘资料哦

    刚开始看STM32的库函数,会有很多疑惑,例如指针怎么用,结构体跟指针怎么配合,例如函数的参数有什么要求,如何实时更新IO口的数据等.如果重新进行C语言的学习,那么要学很久才能够系统地认识.本文则将比 ...

  8. 电脑cmd命令快速查看连接过的WIFI密码信息

    只是突然发现,好奇心作怪,试了一下,妈妈再也不用担心我忘记家里的wifi密码了 1.直接打开"运行"(win键+R) 2.输入CMD 确定 3.输入下面cmd命令.鼠标粘贴 for ...

  9. Python课程笔记 (五)

    今天主要学习图形用户界面,更多的还是要我们自己去实际操作,课仿佛上了一半就完了,分享一下课程(这里在SixthClass)的源码: https://gitee.com/wang_ming_er/pyt ...

  10. 批量免密ssh

    参考连接:https://www.cnblogs.com/xiaoyuxixi/p/11413355.html 适用于所有密码都一样的情况下 应用场景: 在应用ansible的实际情况中,有一个很现实 ...