Codeforces Round #691 (Div. 2) 题解
- A
不多说了吧,直接扫一遍求出 \(r_i>b_i\) 的个数和 \(r_i<b_i\) 的个数
- B
稍微打个表找个规律就可以发现,当 \(n\) 为奇数的时候,答案为 \(\dfrac{(n+1)(n+3)}{2}\),当 \(n\) 为偶数的时候,答案为 \((\dfrac{n}{2}+1)^2\)。
- C
考虑 \(\operatorname{gcd}\) 的另一种计算方式,\(\operatorname{gcd}(a_1,a_2,\dots,a_n)=\operatorname{gcd}(a_1,a_2-a_1,a_3-a_2,\dots,a_n-a_{n-1})\),那么就有 \(\operatorname{gcd}(a_1+x,a_2+x,\dots,a_n+x)=\operatorname{gcd}(a_1+x,a_2-a_1,a_3-a_2,\dots,a_n-a_{n-1})\),预处理出 \(G=\operatorname{gcd}(a_2-a_1,a_3-a_2,\dots,a_n-a_{n-1})\),然后对于每组询问,输出 \(\operatorname{gcd}(G,a_1+b_j)\) 即可。
- D
首先要明确的一点是,我们不会出现回倒的情况,就是从杯子 \(x\) 倒到一个杯子 \(y\),再倒到一个杯子 \(z\),因为这样还不如 \(x\) 直接倒到 \(z\),\(y\) 直接倒到 \(z\)。
于是本题变为选择 \(k\) 个杯子 \(i_1,i_2,\dots,i_k\),将所有其它杯子里的水倒到这 \(k\) 个杯子里,这样总共能容纳 \(\min(a_{i_1}+a_{i_2}+\dots+a_{i_k},b_{i_1}+b_{i_2}+\dots+b_{i_k}+\sum\limits_{i \text{没被选择}}\frac{b_i}{2})\) 的水。
然后就可以 \(dp\) 了,\(dp_{i,j,k}\) 表示在前 \(i\) 个杯子里选择了 \(j\) 个杯子,这 \(j\) 个杯子的 \(a_i\) 的和为 \(k\),最多能容纳多少水。时空复杂度均 \(n^4\)。
- E
现场被这题区分了/kk
首先要明确的一点是 LRUD 和 IC 肯定不是同一类的。如果 \(s\) 中只包含 LRUD,那此题就变得异常简单。直接维护两个标记 \(x,y\) 表示行/列分别位移了多少就可以了。
重头戏在于 I 和 C。首先我们要理解 I 和 C 的本质。
对于排列 \(p_1,p_2,\dots,p_n\),我们如果把每个元素看作一个二维坐标 \((i,p_i)\),那么这个排列的逆元相当于 \((p_i,i)\),即交换两维坐标的值。
I 和 C 也是如此。如果我们把这个矩阵看作 \(n^2\) 个三维空间里的点 \((i,j,a_{i,j})\),那么 I 操作其实就是交换 x,z 坐标的值,C 操作其实是交换 y,z 的值。
这样一来这题就很好做了,对于 LRUD,记录每一维的增量,对于 IC,记录当前每一维是原来的第几维,这样每个操作都可以 \(\mathcal O(1)\) 解决了。
看到没?什么超纲的算法都没有。所以啊,菜是原罪/kk
- F
现场试图看这道题结果什么思路都没有。
考虑记 \(0\) 为 \(-1\),\(1\) 为 \(+1\),这样可以得到一个长度为 \(|s|\) 的由 \(+1\) 和 \(-1\) 组成的序列。
然后对这个序列做一遍前缀和,并连一条 \(s_i\to s_{i+1}\) 的有向边,这样可以得到一张图,一个欧拉回路就对应着一个字符串。
考虑题目中那个奇怪的操作的本质。假设我们对区间 \([l,r]\) 进行操作。既然 \([l,r]\) 要求 01 个数相等,那么肯定有 \(s_{l-1}=s_r\),而翻转+反转实际上等于将这些边反向。所以实际上该操作等价于选择一个环然后将环上所有边反向。
这里需要观察出一个性质:就是操作前后,原图所包含的边集 \(E\) 是不变的。因为每次操作是将边反向,所以如果把有向边改为无向边,那么边集显然是不变的。又由于我们操作的是一个环,所以对于一条边 \((x,y)\),\(x\to y\) 和 \(y\to x\) 的次数是一样的,所以 \(x\to y\) 和 \(y\to x\) 在操作前后出现次数都是相同的。
有了这个性质,我们还需观察出另一个性质:原图任意一条欧拉回路(起点和终点必须与初始相同)代表的都可以由原字符串进行一系列操作得到:首先我们假设原路径与当前路径在 \(x\) 位置出现了分歧,一个走了 \(x\to x+1\) 的边,一个走了 \(x\to x-1\) 的边。而这两个路径终究还是要走 \(x\to x-1\) 和 \(x\to x+1\) 的边的,所以肯定有一条边 \(x+1\to x\),也有一条边 \(x-1\to x\),此时我们选择 \(x\to x-1\to x\to x+1\to x\),并将其翻转,看看会发生什么。此时我们惊奇地发现,原来先走 \(x\to x-1\) 的路径改走 \(x\to x+1\) 了!以此类推,最后两个路径一定会重合。
于是此题就变为:求字典序最小的欧拉序。直接贪心就可以了。
看到没?什么超纲的算法都没有。所以啊,菜是原罪/kk
看到没?什么超纲的算法都没有。所以啊,菜是原罪/kk
Codeforces Round #691 (Div. 2) 题解的更多相关文章
- Codeforces Round #182 (Div. 1)题解【ABCD】
Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...
- Codeforces Round #608 (Div. 2) 题解
目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...
- Codeforces Round #525 (Div. 2)题解
Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...
- Codeforces Round #528 (Div. 2)题解
Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...
- Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F
Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...
- Codeforces Round #677 (Div. 3) 题解
Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...
- Codeforces Round #665 (Div. 2) 题解
Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...
- Codeforces Round #160 (Div. 1) 题解【ABCD】
Codeforces Round #160 (Div. 1) A - Maxim and Discounts 题意 给你n个折扣,m个物品,每个折扣都可以使用无限次,每次你使用第i个折扣的时候,你必须 ...
- Codeforces Round #383 (Div. 2) 题解【ABCDE】
Codeforces Round #383 (Div. 2) A. Arpa's hard exam and Mehrdad's naive cheat 题意 求1378^n mod 10 题解 直接 ...
随机推荐
- JVM:体系结构
JVM:体系结构 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 概览 Java GC 主要回收的是 方法区 和 堆 中的内容 类加载器 类加载器是什么 双亲委派 ...
- BUAA_2020_软件工程_个人博客作业
项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业 我在这个课程的目标是 了解软件工程的技术,掌握工程化开发的能力 这个作业在哪个具体方 ...
- BUAA2020软工作业(四)——结对项目
项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 结对项目作业 我在这个课程的目标是 进一步提高自己的编码能力,工程能力,团队协作能力 这个作业在哪 ...
- dfs初步模板解析
#include<stdio.h> int a[10],book[10],n; //这里还有需要注意的地方C语言全局变量默认为0 void dfs(int step){ //此时在第ste ...
- 旋转数组的最小数字 牛客网 剑指Offer
旋转数组的最小数字 牛客网 剑指Offer 题目描述 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4, ...
- 0x04
二分: while(l<r) { int mid=(l+r)/2; if(符合条件) r=mid; else l=mid+1; } 固定下二分的写法: 终止条件:l==r: 取mid=(l+r) ...
- hdu 1848 Fibonacci again and again (SG)
题意: 3堆石头,个数分别是m,n,p. 两个轮流走,每走一步可以选择任意一堆石子,然后取走f个.f只能是菲波那契中的数(即1,2,3,5,8.....) 取光所有石子的人胜. 判断先手胜还是后手胜. ...
- PicGo插件
前言:主要介绍PicGo插件,这里的图床上传软件是PicGo-Core,使用命令行操作 PicGo_Path:自己的PicGo安装路径,如果通过Typora一般安装位置位于 C:\Users\自己的主 ...
- 【PowereDesigner】使用方法|mysql画图使用|不在跟新
自己画E-R图时, 运行:Power Designer ..1 ..2 ..3 可以先放两个空的实体,然后,分别修改属性(鼠标右键,最后一项Properties),名称为:学生.课程. ..4 创建一 ...
- Linux&C———进程间通信
管道和有名管道 消息队列 共享内存 信号 套接字 由于进程之间的并不会像线程那样共享地址空间和数据空间,所以进程之间就必须有自己特有的通信方式,这篇博客主要介绍自己了解到的几种进程之间的通信方式,内容 ...