Codeforces 521D - Shop(贪心)
一道不算太难的贪心,可惜又没自己想出来,显然省选之后我的能力呈 \(y=-1145141919810192608179998244353x+c\) 的趋势下滑,其中 \(c\) 为我省选前的能力(
首先假设我们已经选出了这 \(k\) 个操作,考虑按照怎样的顺序执行这些操作,显然我们会先执行赋值操作,再加法操作,最后乘法操作,因为赋值操作早晚都是要进行的,按照贪心的思想显然在一开始就进行赋值操作最优,而对于序列中某个元素 \(x\),我们假设它需进行 \(+y,\times z\) 两个操作,那么先加后乘的结果为 \(z(x+y)\),先乘后加的结果为 \(xz+y\),做差可得 \(\Delta=y(z-1)\ge 0\),故先加后乘必然比先乘后加来得更优。
接下来考虑怎样选出这些操作。首先很明显对于一个 \(\times z\) 的操作,不管它作用在哪个数上,都会导致最后的结果也乘 \(z\),也就是说如果只有乘法操作的话,我们可以直接将 \(z\) 从大到小排序贪心。那加上加法和赋值操作该怎么办呢?有一件很显然的事情是赋值操作可以转化为加法操作,因为显然每个数最多被赋一次值,并且给下标为 \(i\) 的元素赋的值只可能是所有作用在 \(i\) 的赋值操作中值最大的,假设为 \(x_i\),那么我们就可以将作用在 \(i\) 上的赋值操作看作一次 \(+(x_i-a_i)\) 的加法操作。这样就只有加法操作了,我们还可以发现,对于加法操作我们肯定会按加的值从大到小选择,也就是说对于一次作用在 \(i\) 上的加法操作 \(+v\),假如我们执行了这次操作,那么在此次操作前 \(a_i\) 的值必然是一个定值,也就是说我们也可以将这次操作看作 \(\times\dfrac{a_i+v}{a_i}\)。这样所有加法、赋值操作都可以转化为乘法操作,也就可以按照最一开始的贪心策略贪了,时间复杂度 \(n\log n\)。
这里有一个小的注意点,就是我们由加法转化来的乘法操作会出现分数,此时我们就要对分数比较大小,而这题分数的分子分母会达到 \(10^5\times 10^6=10^{11}\),直接比较大小运算量会达到 \(10^{11}\times 10^{11}=10^{22}\),爆 ll,如果我没记错的话这样写大概会 WA 146,这里有一个小技巧,就是所有分数值都减去 \(1\),这样 \(\times\dfrac{a_i+v}{a_i}\) 就变成了 \(\dfrac{v}{a_i}\),分子大小就降到了 \(10^{6}\),直接排就能过了。
const int MAXN=1e5;
int n,m,k,ini[MAXN+5],c1,c2,c3;
struct event{int opt,id,x;ll a,b;} q1[MAXN+5],q2[MAXN+5],q3[MAXN+5];
bool cmp1(event lhs,event rhs){return (lhs.x^rhs.x)?(lhs.x<rhs.x):(lhs.a<rhs.a);}
bool cmp2(event lhs,event rhs){return (lhs.x^rhs.x)?(lhs.x<rhs.x):(lhs.a>rhs.a);}
bool cmp3(event lhs,event rhs){return lhs.a*rhs.b>rhs.a*lhs.b;}
bool cmp4(event lhs,event rhs){return lhs.opt<rhs.opt;}
int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++) scanf("%d",&ini[i]);
for(int i=1;i<=m;i++){
int opt,x,y;scanf("%d%d%d",&opt,&x,&y);
if(opt==1&&y>ini[x]) q1[++c1]={1,i,x,y,1};
else if(opt==2) q2[++c2]={2,i,x,y,1};
else if(opt==3) q3[++c3]={3,i,x,y,1};
} sort(q1+1,q1+c1+1,cmp1);
for(int i=1;i<=c1;i++) if(q1[i].x!=q1[i+1].x)
q2[++c2]={q1[i].opt,q1[i].id,q1[i].x,q1[i].a-ini[q1[i].x],1};
sort(q2+1,q2+c2+1,cmp2);ll sum=0;
for(int i=1;i<=c2;i++){
if(q2[i].x!=q2[i-1].x) sum=ini[q2[i].x];
q3[++c3]={q2[i].opt,q2[i].id,q2[i].x,sum+q2[i].a,sum};sum+=q2[i].a;
// printf("%d %d %d %lld\n",q2[i].opt,q2[i].id,q2[i].x,q2[i].a);
} for(int i=1;i<=c3;i++) q3[i].a-=q3[i].b;
sort(q3+1,q3+c3+1,cmp3);k=min(c3,k);
sort(q3+1,q3+k+1,cmp4);printf("%d\n",k);
for(int i=1;i<=k;i++) printf("%d ",q3[i].id);
return 0;
}
Codeforces 521D - Shop(贪心)的更多相关文章
- CodeForces - 158B.Taxi (贪心)
CodeForces - 158B.Taxi (贪心) 题意分析 首先对1234的个数分别统计,4人组的直接加上即可.然后让1和3成对处理,只有2种情况,第一种是1多,就让剩下的1和2组队处理,另外一 ...
- codeforces 724D(贪心)
题目链接:http://codeforces.com/contest/724/problem/D 题意:给定一个字符串和一个数字m,选取一个一个子序列s,使得对于字符串中任意长度为m的子序列都至少含有 ...
- Codeforces 626G Raffles(贪心+线段树)
G. Raffles time limit per test:5 seconds memory limit per test:256 megabytes input:standard input ou ...
- Cut 'em all! CodeForces - 982C(贪心dfs)
K - Cut 'em all! CodeForces - 982C 给一棵树 求最多能切几条边使剩下的子树都有偶数个节点 如果n是奇数 那么奇数=偶数+奇数 不管怎么切 都会有奇数 直接打印-1 贪 ...
- CodeForces - 940E - Cashback +贪心+DP
传送门:CodeForces - 940E - Cashback 题意:在一个长度为n的数组中,可以分出长度为 k 连续的多个数组b(每个数组 b 的 k 可不相同),然后,可以对每个数组 b 进行删 ...
- Codeforces 515C 题解(贪心+数论)(思维题)
题面 传送门:http://codeforces.com/problemset/problem/515/C Drazil is playing a math game with Varda. Let’ ...
- CodeForces 485C Bits[贪心 二进制]
C. Bits time limit per test1 second memory limit per test256 megabytes inputstandard input outputsta ...
- codeforces 732E(贪心)
题目链接:http://codeforces.com/contest/732/problem/E 题意:有n台计算机,m个插座,每台计算机有一个值a[i],每个插座有一个值b[i],每个插座最多只能对 ...
- Codeforces 732D [二分 ][贪心]
/* 不要低头,不要放弃,不要气馁,不要慌张 题意: n天进行m科考试,每科考试需要a的复习时间,n天每天最多可以考一科.并且指定哪天考哪科. 注意考试那天不能复习. 问最少需要多少天可全部通过考试. ...
随机推荐
- 【UE4 C++ 基础知识】<7> 容器——TSet
概述 TSet是一种快速容器类,(通常)用于在排序不重要的情况下存储唯一元素. TSet 类似于 TMap 和 TMultiMap,但有一个重要区别:TSet 是通过对元素求值的可覆盖函数,使用数据值 ...
- pycharm 服务器连接及一些问题解决
主要介绍一下如何使用pycharm连接服务器并在服务器上炼丹,并对遇到的一个小问题进行说明. 目录 1,SSH连接 2,linux常用命令 3,配置anaconda 4,运行代码 5,一个常见错误 1 ...
- Mybatis 动态批量修改
封面:学校夜景 xdm,祝大家节日快乐!! 今天听<路过人间>演唱会Live限定版,爱上了一句歌词. 说来惭愧,人对爱只学会,视死如归. 1.业务需求 如下: 前台传给我一个 docume ...
- Java:ConcurrentHashMap类小记-2(JDK7)
Java:ConcurrentHashMap类小记-2(JDK7) 对 Java 中的 ConcurrentHashMap类,做一个微不足道的小小小小记,分三篇博客: Java:ConcurrentH ...
- 基于ImportBeanDefinitionRegistrar和FactoryBean动态注入Bean到Spring容器中
基于ImportBeanDefinitionRegistrar和FactoryBean动态注入Bean到Spring容器中 一.背景 二.实现方案 1.基于@ComponentScan注解实现 2.基 ...
- kafka错误之 Topic xxx not present in metadata after 60000 ms
Topic xxx not present in metadata after 60000 ms 一.背景 二.场景还原 1.jar包引入 2.jar代码 3.运行结果 三.问题解决 四.参考文档 一 ...
- springboot读取配置文件中的信息
在一个项目中,我们有时候会把一些配置信息写入到一个配置文件中,在java代码中读取配置文件的信息.在此记录下读取属性文件中的内容. 在springboot项目中,springboot的配置文件可以使用 ...
- $dy$讲课总结
字符串: 1.广义后缀自动机(大小为\(m\))上跑一个长度为\(n\)的串,所有匹配位置及在\(parent\)树上其祖先的数量的和为\(min(n^2,m)\),单次最劣是\(O(m)\). 但是 ...
- 安装hexo博客
前言 ** 跟着步骤一步一步来进行安装 ** 准备环境:node.js和包管理器npm 1:查看包文件 接着安装 淘宝镜像源 sudo这个需要添加获取文件夹访问权限 sudo npm install ...
- 零基础入门C语言超详细的字符串详解
本篇文章是对C语言字符串操作进行了详细的总结分析,需要的朋友参考下 1)字符串操作 strcpy(p, p1) 复制字符串 strncpy(p, p1, n) 复制指定长度字符串 strcat(p, ...