karatsuba乘法

Karatsuba乘法是一种快速乘法。此算法在1960年由Anatolii Alexeevitch Karatsuba 提出,并于1962年得以发表。[1] 此算法主要用于两个大数相乘。普通乘法的复杂度是n2,而Karatsuba算法的复杂度仅为3nlog3≈3n1.585(log3是以2为底的)[2] 。

算法描述

编辑

步骤简介

Karatsuba算法主要应用于两个大数的相乘,原理是将大数分成两段后变成较小的数位,然后做3次乘法,并附带少量的加法操作和移位操作。
现有两个大数,x,y。
首先将x,y分别拆开成为两部分,可得x1,x0,y1,y0。他们的关系如下:
x = x1 * 10m + x0;
y = y1 * 10m + y0。其中m为正整数,m < n,且x0,y0 小于 10m。
那么 xy = (x1 * 10m + x0)(y1 * 10m +
y0)
=z2 * 102m + z1 * 10m +
z0,其中:
z2 = x1 * y1;
z1 = x1 * y0 + x0 * y1;
z0 = x0 * y0。
此步骤共需4次乘法,但是由Karatsuba改进以后仅需要3次乘法。因为:
z1 = x1 * y0+ x0 * y1
z1 = (x1 + x0) * (y1 + y0) - x1 * y1 - x0 * y0,
故z1 便可以由一次乘法及加减法得到。

实例展示

设x = 12345,y=6789,令m=3。那么有:
12345 = 12 * 1000 + 345;
6789 = 6 * 1000 + 789。
下面计算:
z2 = 12 * 6 = 72;
z0 = 345 * 789 = 272205;
z1 = (12 + 345) * (6 + 789) - z2 - z0 = 11538。
然后我们按照移位公式(xy = z2 * 10 + z1 * 10 + z0)可得:
xy = 72 * 10002 + 11538 * 1000 + 272205 = 83810205。

效率分析

编辑

对于给定的n位大数,算法的复杂度不超过3nlog3 ≈ 3n1.585。

伪代码描述

编辑

1
2
3
4
5
6
7
8
9
10
11
12
13
procedurekaratsuba(num1,num2)
if(num1<10)or(num2<10)
returnnum1*num2
/*calculatesthesizeofthenumbers*/
m=max(size(num1),size(num2))
m2=m/2
high1,low1=split_at(num1,m2)
high2,low2=split_at(num2,m2)
/*3callsmadetonumbersapproximatelyhalfthesize*/
z0=karatsuba(low1,low2)
z1=karatsuba((low1+high1),(low2+high2))
z2=karatsuba(high1,high2)
return(z2*10^(m))+((z1-z2-z0)*10^(m/2))+(z0)

karatsuba乘法的更多相关文章

  1. 大整数算法[11] Karatsuba乘法

    ★ 引子         前面两篇介绍了 Comba 乘法,最后提到当输入的规模很大时,所需的计算时间会急剧增长,因为 Comba 乘法的时间复杂度仍然是 O(n^2).想要打破乘法中 O(n^2) ...

  2. Karatsuba乘法--实现大数相乘

    Karatsuba乘法 Karatsuba乘法是一种快速乘法.此算法在1960年由Anatolii Alexeevitch Karatsuba 提出,并于1962年得以发表.此算法主要用于两个大数相乘 ...

  3. [转]大整数算法[11] Karatsuba乘法

    ★ 引子         前面两篇介绍了 Comba 乘法,最后提到当输入的规模很大时,所需的计算时间会急剧增长,因为 Comba 乘法的时间复杂度仍然是 O(n^2).想要打破乘法中 O(n^2) ...

  4. 优化 Karatsuba 乘法(老物)

    虽然写好了我自己用的a*启发函数但还是有些不尽人意,如果通过数学分析确定不出问题可以工作了的话应该就会发出来了 // Karatsuba 递归式距离推导 // h(x) = f(x) * g(x):/ ...

  5. [MIT6.006] 11. Integer Arithmetic, Karatsuba Multiplication 整型算术,Karatsuba乘法

    很多人不喜欢√2的表达,他们认为它不是一个数. 一.卡塔兰数 Catalan numbers 在数方面上,有个著名的数叫卡塔兰数 Catalan numbers,它是组合数学中一个常在各种计数问题中出 ...

  6. 数据结构与算法 Big O 备忘录与现实

    不论今天的计算机技术变化,新技术的出现,所有都是来自数据结构与算法基础.我们需要温故而知新.        算法.架构.策略.机器学习之间的关系.在过往和技术人员交流时,很多人对算法和架构之间的关系感 ...

  7. 大整数相乘问题总结以及Java实现

    最近在跟coursera上斯坦福大学的算法专项课,其中开篇提到了两个整数相乘的问题,其中最简单的方法就是模拟我们小学的整数乘法,可想而知这不是比较好的算法,这门课可以说非常棒,带领我们不断探索更优的算 ...

  8. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  9. 《python解释器源码剖析》第2章--python中的int对象

    2.0 序 在所有的python内建对象中,整数对象是最简单的对象.从对python对象机制的剖析来看,整数对象是一个非常好的切入点.那么下面就开始剖析整数对象的实现机制 2.1 初识PyLongOb ...

随机推荐

  1. 微信小程序实现上拉和下拉加载更多

    在上一篇文章中,我们知道了使用 scroll-view 可以实现上拉加载更多,但是由于 scroll-view 的限制,它无法实现下拉加载更多,这篇文章我们使用 view 组件来实现 上拉和下拉加载更 ...

  2. centOs7.6安装 mysql-8.0.27

    1.下载mysql 2.连接服务器 3.通过 rpm -qa | grep mariadb 命令查看 mariadb 的安装包 4.通过 rpm -e mariadb-libs-5.5.68-1.el ...

  3. pycharm基本使用python的注释语法

    pychram基本使用 1.主题选择 file settings Editor color Scheme 2.pycharm切换解释器 file settings Project Python Int ...

  4. Centos 7 端口聚合

    简单粗暴,直接复制命令就好了 还是先啰嗦一下,添加网卡之后,如果没有网卡配置文件,可以通过nmcli con show 先查看网卡的唯一ID,然后复制其他的网卡配置文件,修改device项,name项 ...

  5. zabbix 自定义监控项,监控tomcat访问量

    uv:访客量.每个独立上网电脑视为一位访客.pv:访问量.页面浏览量或者点击量,访客每访问一次记录一次. 1.创建文件 /home/zabbix/pvuv_number.sh [ #/bin/bash ...

  6. 【java+selenium3】自动化cookie操作+图形验证码处理 (十五)

    一.cookie操作 1.获取浏览器所有的cookie import java.util.Set; import org.openqa.selenium.Cookie; //获取浏览器所有的cooki ...

  7. 3D 穿梭效果?使用 CSS 轻松搞定

    背景 周末在家习惯性登陆 Apex,准备玩几盘.在登陆加速器的过程中,发现加速器到期了. 我一直用的腾讯网游加速器,然而点击充值按钮,提示最近客户端升级改造,暂不支持充值(这个操作把我震惊了~).只能 ...

  8. PTA 哈利·波特的考试 (25分)

    PTA 哈利·波特的考试 (25分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...

  9. 数据库炸了----我就重启了一下啊(Communications link failure)

    重启数据库后,数据库大部分时间连不上了:连续请求不会报错,请求间隔时间稍微长一点就会报错报错如图: com.mysql.cj.jdbc.exceptions.CommunicationsExcepti ...

  10. C代码

    #include<stdio.h>#include<stdlib.h>void main(){    char    ch, file_name1[20], file_name ...