目录

Wang H, Wang Y, Zhou Z, et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition[C]. computer vision and pattern recognition, 2018: 5265-5274.

@article{wang2018cosface:,

title={CosFace: Large Margin Cosine Loss for Deep Face Recognition},

author={Wang, Hao and Wang, Yitong and Zhou, Zheng and Ji, Xing and Gong, Dihong and Zhou, Jingchao and Li, Zhifeng and Liu, Wei},

pages={5265--5274},

year={2018}}

本文从angular margin角度提出了对交叉熵损失的一个改进.

主要内容

一般的softmax交叉熵损失为

\[L_s = \frac{1}{N}\sum_{i=1}^N -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^C e^{f_{y_j}}},
\]

其中

\[f_j = W^T_jx=\|W_j\| \|x\| \cos \theta_j,
\]

固定\(\|W_j\|=1, \|x\|=s\), 则

\[L_{ns} = \frac{1}{N} \sum_i -\log \frac{e^{s\cos(\theta_{y_i},i)}}{\sum_j e^{s \cos(\theta_{y_j}, i)}}
\]

只与角度angular margin有关, 所以实际上, 一个类别属于\(i\)就是当

\[\cos \theta_i > \cos \theta_j, \forall j\not = i,
\]

为了给其增加一些难度, 我们可以

\[\cos \theta_i - m > \cos \theta_j, \forall j\not = i,
\]

即我们在\(\cos \theta_i > \cos \theta_j\)的基础上, 进一步要求其angular margin进一步提高, 这就是large angular margin的思想.

于是本文的损失为:

cosface: large margin cosine loss for deep face recognition的更多相关文章

  1. 基于Caffe的Large Margin Softmax Loss的实现(中)

    小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miao ...

  2. Large Margin Softmax Loss for Speaker Verification

    [INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的 ...

  3. 基于Caffe的Large Margin Softmax Loss的实现(上)

    小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...

  4. A Discriminative Feature Learning Approach for Deep Face Recognition

    url: https://kpzhang93.github.io/papers/eccv2016.pdf year: ECCV2016 abstract 对于人脸识别任务来说, 网络学习到的特征具有判 ...

  5. [论文阅读] A Discriminative Feature Learning Approach for Deep Face Recognition (Center Loss)

    原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每 ...

  6. Center Loss - A Discriminative Feature Learning Approach for Deep Face Recognition

    URL:http://ydwen.github.io/papers/WenECCV16.pdf这篇论文主要的贡献就是提出了Center Loss的损失函数,利用Softmax Loss和Center ...

  7. Large Margin DAGs for Multiclass Classification

    Abstract We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which i ...

  8. 《Ranked List Loss for Deep Metric Learning》CVPR 2019

    Motivation: 深度度量学习的目标是学习一个嵌入空间来从数据点中捕捉语义信息.现有的成对或者三元组方法随着模型迭代过程会出现大量的平凡组导致收敛缓慢.针对这个问题,一些基于排序结构的损失取得了 ...

  9. 吴恩达机器学习笔记43-SVM大边界分类背后的数学(Mathematics Behind Large Margin Classification of SVM)

    假设我有两个向量,

随机推荐

  1. day07 MySQL索引事务

    day07 MySQL索引事务 昨日内容回顾 pymysql模块 # 链接数据库都是使用这个模块的 # 创建链接 import pymysql conn = pymysql.connect( host ...

  2. nextcloud搭建私有云盘

    一.基础环境准备 1.安装一台centos7的linux服务器. # 系统初始化 # 如果时区不对,请修改时区 #mv /etc/localtime /etc/localtime_bak #ln -s ...

  3. C/C++ Qt 数据库与SqlTableModel组件应用

    SqlTableModel 组件可以将数据库中的特定字段动态显示在TableView表格组件中,通常设置QSqlTableModel类的变量作为数据模型后就可以显示数据表内容,界面组件中则通过QDat ...

  4. Kotlin 学习(1)

    本文出自链接:https://www.jianshu.com/p/ef9584a8ebf8 Kotlin的插件安装: Settings->Plugins->Browse Repositor ...

  5. oracle 外部表查alter日志

    --创建文件夹,路径是alter日志的路径 create or replace directory data_dir as '/u01/app/oracle/diag/rdbms/orcl/orcl/ ...

  6. Data Calendar

    1.Date对象 Date类在java.util包中.使用Date类的无参数构造方法创建的对象可以获取本地当前时间. 用Date的构造方法Date(long time)创建的Date对象表 示相对19 ...

  7. 解决CSV文件用Excel打开乱码问题

    这篇文章适合有一定编码基础的人看,纯手动解决乱码问题请参见: 转码保存后,重新打开即可. 转码操作如下: 编辑器->另存为->ASCII码格式文件/UTF-8含BOM格式->保存. ...

  8. Oracle带输入输出参数的存储过程

    (一)使用输入参数 需求:在emp_copy中添加一条记录,empno为已有empno的最大值+1,ename不能为空且长度必须大于0,deptno为60. 创建存储过程: create or rep ...

  9. ssm+ajax实现登陆

    ssm的搭建见上一章 1.数据协议层 public User selectByLoginnameAndPassword(@Param("loginname")String logi ...

  10. 30个类手写Spring核心原理之MVC映射功能(4)

    本文节选自<Spring 5核心原理> 接下来我们来完成MVC模块的功能,应该不需要再做说明.Spring MVC的入口就是从DispatcherServlet开始的,而前面的章节中已完成 ...