oj教程--队列
队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。
oj教程--队列的更多相关文章
- Laravel 5.2 教程 - 队列
一.简介 Laravel 队列组件提供一个统一的 API 集成了许多不同的队列服务,队列允许你延后执行一个耗时的任务,例如延后至指定的时间才发送邮件,进而大幅的加快了应用程序处理请求的速度. 由于本例 ...
- 双端队列篇deque SDUT OJ 双向队列
双向队列 Time Limit: 1000MS Memory limit: 65536K 题目描述 想想双向链表……双向队列的定义差不多,也就是说一个队列的队尾同时也是队首:两头都可以做出队,入队的操 ...
- oj教程--坑
1.OJ判断是只看输出结果的. 2.纯字符串用puts()输出. 3.有很多数学题是有规律的,直接推公式或用递归.循环. 4.擅用三目运算符 5.将乘法转换成加法减少时间 6.空间换时间 7.数组越界
- oj教程--学习顺序
1.数组 2.排序 3.递归 4.栈 5.队列 6.链表 7.二叉树 8.大数或高精度 9.枚举 10.搜索 11.字符串问题 12.贪心 13.最短路径 14.动态规划
- oj教程--链表
链表.我们知道数组是一种通用的数据结构,能用来实现栈.队列等很多数据结构.而链表也是一种使用广泛的通用数据结构,它也可以用来作为实现栈.队列等数据结构的基础,基本上除非需要频繁的通过下标来随机访问各个 ...
- oj教程--排序算法(Java)
import java.util.ArrayList; import java.util.List; /** * 排序算法主类 * * @author eric */ class SortArray ...
- oj教程--深度优先DFS
深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法.
- oj教程--栈
栈(stack)又名堆栈,它是一种运算受限的线性表.其限制是仅允许在表的一端进行插入和删除运算.这一端被称为栈顶,相对地,把另一端称为栈底.向一个栈插入新元素又称作进栈.入栈或压栈,它是把新元素放到栈 ...
- oj教程--贪心
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法不是对所有问题都能得到整体最优解,关键是 ...
随机推荐
- golang中为何在同一个goroutine中使用无缓冲通道会导致死锁
package main import "fmt" func main() { /* 以下程序会导致死锁 c := make(chan int) c <- 10 n1 := ...
- linux系统别名
目录 一:系统别名 一:系统别名 alias 格式: alias xxx='命令' alias : 查看系统别名 alias rm='xxx' : 设置系统别名 改别名 别名 执行这个命令 [root ...
- 利用Jemalloc进行内存泄漏的调试
内存不符预期的不断上涨,可能的原因是内存泄漏,例如new出来的对象未进行delete就重新进行复制,使得之前分配的内存块被悬空,应用程序没办法访问到那部分内存,并且也没有办法释放:在C++中,STL容 ...
- Linux 学习2
1.配置好阿里云yum源生成yum缓存下载nginx,并且启动nginx服务,使用浏览器访问,nginx页面 yum源的工作目录是? https://www.cnblogs.com/dlh-lmsh/ ...
- react直接使用bootstrap失效的原因
react用的是className!而不是class~
- Loadrunner11录制移动端测试脚本(原文:http://blog.csdn.net/zhailihua/article/details/73610317)
一.LR配置 1)LR设置代理,利用手机录制脚本 1-协议选择Web(HTTP/HTML)协议即可 2-录制开始前,对Recoding Options中的Port Mapping配置如下 a.新建Ne ...
- Python中列表操作函数append的浅拷贝问题
L=int(input())#L位数N=int(input())#N进制row=[]list1=[]for i in range(1,N): row.append(1)list1.append(row ...
- MariaDB Spider 数据库分库分表实践
分库分表 一般来说,数据库分库分表,有以下做法: 按哈希分片:根据一条数据的标识计算哈希值,将其分配到特定的数据库引擎中: 按范围分片:根据一条数据的标识(一般是值),将其分配到特定的数据库引擎中: ...
- CKKS Part5: CKKS的重缩放
本文翻译于 CKKS EXPLAINED, PART 5: RESCALING,主要介绍CKKS方案中最重要的技术- rescaling,重缩放技术 介绍 在CKKS的前一篇文章 CKKS Part4 ...
- AT2699 [ARC081D] Flip and Rectangles
以下是简要题解: 首先思考如何判定一个矩形是否能通过操作变成全黑. 首先从简单而又特殊的 \(2 \times 2\) 的矩形开始,不难发现只要其中黑色数量不为奇数即可. 近一步拓展可以发现,一个矩形 ...