Floyd算法C++实现与模板题应用
简介
Floyd算法算是最简单的算法,没有之一。
其状态转移方程如下map[i , j] =min{ map[i , k] + map[k , j] , map[i , j] };
map[i , j]表示 i 到 j 的最短距离,K是穷举 i , j 的断点,map[n , n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i , k]这条路。
算法步骤
1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。
把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。定义一个矩阵D用来记录
所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,
G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
具体参考这篇文章
https://www.cnblogs.com/wangyuliang/p/9216365.html
C++实现
#include<iostream>
using namespace std;
const int inf = 0x7fffff - 1;
int e[10][10];
int n, m;
int main() {
cin >> n >> m;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j)e[i][j] = 0;
else e[i][j] = inf;
}
}
int src, dst, val;
for (int i = 0; i < m; i++) {
cin >> src >> dst >> val;
e[src][dst] = val;
}
//Floyd-Warshall算法核心语句
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (e[i][k] + e[k][j] < e[i][j]) {
e[i][j] = e[i][k] + e[k][j];
}
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
printf("%5d", e[i][j]);
}
cout << endl;
}
return 0;
}
/*
4 8
0 1 2
0 2 6
0 3 4
1 2 3
2 0 7
2 3 1
3 0 5
3 2 12
*/
百练-Stockbroker Grapevine
总时间限制:
1000ms
内存限制:
65536kB
描述
Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers to give your employer the tactical edge in the stock market. For maximum effect, you have to spread the rumours in the fastest possible way.Unfortunately for you, stockbrokers only trust information coming from their “Trusted sources” This means you have to take into account the structure of their contacts when starting a rumour. It takes a certain amount of time for a specific stockbroker to pass the rumour on to each of his colleagues. Your task will be to write a program that tells you which stockbroker to choose as your starting point for the rumour, as well as the time it will take for the rumour to spread throughout the stockbroker community. This duration is measured as the time needed for the last person to receive the information.
输入
Your program will input data for different sets of stockbrokers. Each set starts with a line with the number of stockbrokers. Following this is a line for each stockbroker which contains the number of people who they have contact with, who these people are, and the time taken for them to pass the message to each person. The format of each stockbroker line is as follows: The line starts with the number of contacts (n), followed by n pairs of integers, one pair for each contact. Each pair lists first a number referring to the contact (e.g. a ‘1’ means person number one in the set), followed by the time in minutes taken to pass a message to that person. There are no special punctuation symbols or spacing rules.Each person is numbered 1 through to the number of stockbrokers. The time taken to pass the message on will be between 1 and 10 minutes (inclusive), and the number of contacts will range between 0 and one less than the number of stockbrokers. The number of stockbrokers will range from 1 to 100. The input is terminated by a set of stockbrokers containing 0 (zero) people.
输出
For each set of data, your program must output a single line containing the person who results in the fastest message transmission, and how long before the last person will receive any given message after you give it to this person, measured in integer minutes. It is possible that your program will receive a network of connections that excludes some persons, i.e. some people may be unreachable. If your program detects such a broken network, simply output the message “disjoint”. Note that the time taken to pass the message from person A to person B is not necessarily the same as the time taken to pass it from B to A, if such transmission is possible at all.
样例输入
3
2 2 4 3 5
2 1 2 3 6
2 1 2 2 2
5
3 4 4 2 8 5 3
1 5 8
4 1 6 4 10 2 7 5 2
0
2 2 5 1 5
0
样例输出
3 2
3 10
C++实现
#include<iostream>
#include<vector>
using namespace std;
const int inf = 0x7ffffff;
int e[101][101];
int main() {
int n;
while (cin >> n) {
if (n == 0)break;
int ans = 0, pos = 0;
fill(e[0], e[0] + 100 * 100, inf);
for (int i = 0; i <= 100; i++) {
e[i][i] = 0;
}
int dst, val;
for (int i = 1; i <= n; i++) { //录入数字,作为初始化
int num;
cin >> num;
for (int j = 0; j < num; j++) {
cin >> dst >> val;
e[i][dst] = val;
}
}
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (e[i][k] + e[k][j] < e[i][j]) {
e[i][j] = e[i][k] + e[k][j];
}
}
}
}
int minn = inf;
for (int i = 1; i <= n; i++) {
ans = 0;
for (int j = 1; j <= n; j++) {
ans = ans > e[i][j] ? ans : e[i][j];
}
if (ans < minn) {
minn = ans;
pos = i;
}
}
cout << pos << " " << minn << endl;
}
return 0;
}
Floyd算法C++实现与模板题应用的更多相关文章
- [置顶] 小白学习KM算法详细总结--附上模板题hdu2255
KM算法是基于匈牙利算法求最大或最小权值的完备匹配 关于KM不知道看了多久,每次都不能完全理解,今天花了很久的时间做个总结,归纳以及结合别人的总结给出自己的理解,希望自己以后来看能一目了然,也希望对刚 ...
- 图的最短路径算法-- Floyd算法
Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][ ...
- 图论算法(二)最短路算法:Floyd算法!
最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写 ...
- HDU 1874 畅通工程续(模板题——Floyd算法)
题目: 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多.这让行人很困扰 ...
- POJ 1502 MPI Maelstrom(模板题——Floyd算法)
题目: BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distri ...
- HDU 2544 最短路(模板题——Floyd算法)
题目: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你 ...
- POJ 3041 匈牙利算法模板题
一开始预习是百度的算法 然后学习了一下 然后找到了学长的ppt 又学习了一下.. 发现..居然不一样... 找了模板题试了试..百度的不好用 反正就是wa了..果然还是应当跟着学长混.. 图两边的点分 ...
- poj 1274 The Perfect Stall【匈牙利算法模板题】
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20874 Accepted: 942 ...
- SPOJ RPLN (模板题)(ST算法)【RMQ】
<题目链接> 题目大意:给你一段序列,进行q次区间查询,每次都输出询问区间内的最小值. 解题分析: RMQ模板题,下面用在线算法——ST算法求解.不懂ST算法的可以看这篇博客 >& ...
随机推荐
- GetQueuedCompletionStatus客户端前端和server之间的通信
项目中遇到了这个东西,怎么都调试不到.记录下. 一.完成端口IOCP https://www.cnblogs.com/yuanchenhui/p/iocp_windows.html
- 抽一根烟的时间学会.NET Core 操作RabbitMQ
什么是RabbitMQ? RabbitMQ是由erlang语言开发的一个基于AMQP(Advanced Message Queuing Protocol)协议的企业级消息队列中间件.可实现队列,订阅/ ...
- MySql_176. 第二高的薪水 + limit + distinct + null
MySql_176. 第二高的薪水 LeetCode_MySql_176 题目描述 题解分析 代码实现 # Write your MySQL query statement below select( ...
- PAT-1167(Cartesian Tree)根据中序遍历序列重建最小堆
Cartesian Tree PAT-1167 一开始我使用数组进行存储,但是这样可能会导致无法开足够大的数组,因为树如果是链表状的则无法开这么大的数组(虽然结点很少). 正确的解法还是需要建树,使用 ...
- HDOJ-1540(线段树+较复杂的单点修改和区间查询)
Tunnel Warfare HDOJ-1540 这题关于线段树的操作有一定的难度,需要较好的思维能力. 关于题目的详细解答已经在代码中体现了. #include<iostream> #i ...
- dubbo实战之三:使用Zookeeper注册中心
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- WebRTC 音视频同步原理与实现
所有的基于网络传输的音视频采集播放系统都会存在音视频同步的问题,作为现代互联网实时音视频通信系统的代表,WebRTC 也不例外.本文将对音视频同步的原理以及 WebRTC 的实现做深入分析. 时间戳 ...
- 强制断开ssh连接出现ssh崩溃问题
出现原因 finalshell意外终止,导致ssh连接意外终止 之后怎么都连不上虚拟机的ssh,一看是虚拟机的ssh已经被意外暂停,可能是跟finalshell的意外终止有关 解决 chmod 600 ...
- 追洞小组 | fastjson1.2.24复现+分析
出品|MS08067实验室(www.ms08067.com) 本文作者:爱吃芝士的小葵(Ms08067实验室追洞小组成员) 1.靶场搭建 2.漏洞复现 3.漏洞分析 4.漏洞修复 5.心得 靶场搭建 ...
- 顺序表及基本操作(C语言)
#include <stdio.h> #include <stdlib.h> //基本操作函数用到的状态码 #define TRUE 1; #define FALSE 0; # ...