P6499-[COCI2016-2017#2]Burza【状压dp】
正题
题目链接:https://www.luogu.com.cn/problem/P6499
题目大意
\(n\)个点的一棵树,开始有一个棋子在根处,开始先手选择一个点封锁,然后后手封锁棋子所在点然后移动一步到一个没有封锁的点,之后轮流进行。
先手不知道后手的移动,求先手有没有方法使得后手\(k\)步以内无法移动。
解题思路
后手无法走回头路所以要走到深度为\(k\)的节点,那么问题就变为了在\(k\)以内的每个深度选择一个节点切断,求能否使得树的深度不到达\(k\)。(显然第\(i\)步肯定是封锁深度为\(i\)的更优,因为如果选小于的后手已经跨过这个深度,选大的不如选它的父节点)。
然后n,k是400所以考虑状压dp。有一个结论就是如果\(n\leq k^2\)那么一定有解,因为如果\(n\leq k^2\)那么对于每个深度我们可以每次选择一个分叉的节点,然后去掉条路径一个没有分叉的边,这样每一次至少减少\(2k-1\)条边,然后深度(就是\(k\))减一,若干次以后就是\(k^2\)了。
这样就能把\(k\)缩到\(\sqrt n\)的复杂度,考虑状压。先在可能封锁的点上跑一个\(dfs\)序,然后设\(f_{i,s}\)表示目前决策到第\(dfn_i\)个点,每个深度被选择的情况为\(s\)是否合法。
然后如果选择一个点就直接跳到\(dfs\)序上该节点的子树末尾\(+1\)。然后强制选叶子就好了。
时间复杂度\(O(n2^{min\{k,\sqrt n\}})\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=410;
struct node{
int to,next;
}a[N<<1];
int n,k,tot,cnt,ls[N],dep[N],dfn[N],ed[N];
bool mark[N],f[N][1<<20];
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
bool dfs(int x,int fa){
dep[x]=dep[fa]+1;
if(dep[x]+1==k)return mark[x]=1;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa)continue;
mark[x]|=dfs(y,x);
}
return mark[x];
}
void dfc(int x,int fa){
if(!mark[x])return;dfn[cnt++]=x;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa)continue;
dfc(y,x);
}
ed[x]=cnt;return;
}
int main()
{
scanf("%d%d",&n,&k);
if(n<=k*k)return puts("DA")&0;
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
addl(x,y);addl(y,x);
}
dep[0]=-2;dfs(1,0);dfc(1,0);
int MS=(1<<k);f[1][0]=1;
for(int i=1;i<cnt;i++){
int x=dfn[i];
for(int s=0;s<MS;s++){
if(dep[x]!=k-1)f[i+1][s]|=f[i][s];
if(!((s>>dep[x])&1))
f[ed[x]][s|(1<<dep[x])]|=f[i][s];
}
}
bool ans=0;
for(int s=0;s<MS;s++)
ans|=f[cnt][s];
puts(ans?"DA":"NE");
return 0;
}
P6499-[COCI2016-2017#2]Burza【状压dp】的更多相关文章
- 洛谷 P6499 - [COCI2016-2017#2] Burza(状压 dp)
题面传送门 一道挺有意思的思维题(?) 首先我们假设根节点深度为 \(0\),那么 Daniel 的目标显然就是堵住一些节点使得 Stjepan 不能移动到深度为 \(k\) 的节点,Stjepan ...
- 「BZOJ 5010」「FJOI 2017」矩阵填数「状压DP」
题意 你有一个\(h\times w\)的棋盘,你需要在每个格子里填\([1, m]\)中的某个整数,且满足\(n\)个矩形限制:矩形的最大值为某定值.求方案数\(\bmod 10^9+7\) \(h ...
- 【状压dp】互不侵犯KING
互不侵犯KING Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3866 Solved: 2264[Submit][Status][Discuss] ...
- 简单状压dp的思考 - 最大独立集问题和最大团问题 - 贰
接着上文 题目链接:最大独立集问题 上次说到,一种用状压DP解决任意无向图最大团问题(MCP)的方程是: 注:此处popcountmax代表按照二进制位下1的个数作为关键字比较,即选择二进制位下1的个 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- nefu1109 游戏争霸赛(状压dp)
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...
- poj3311 TSP经典状压dp(Traveling Saleman Problem)
题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...
- [NOIP2016]愤怒的小鸟 D2 T3 状压DP
[NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...
- 【BZOJ2073】[POI2004]PRZ 状压DP
[BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...
随机推荐
- spring boot应用常用配置
pom.xml <!--自动打包--> <plugin> <groupId>org.springframework.boot</groupId> < ...
- Ubuntu 设置不更新某些软件
方法来自:https://blog.csdn.net/zhrq95/article/details/79527073 保持某软件版本不变,如我wps-office,(已测有效@Ubuntu 16.04 ...
- windows 10 + tensorflow-gpu 环境搭建
安装过程可基本按照ubuntu装法,参考https://www.cnblogs.com/xbit/p/9768238.html 其中: conda配置文件:C:\Users\Administrator ...
- Qt中QOpengl的QMatrix4x4矩阵作用原理以及使用方法
1.矩阵具有坐标变换的作用,例如:左乘一个旋转矩阵,实现点的坐标旋转,左乘一个平移矩阵实现,点的平移 2.一个点可以同时串联相乘几个变换矩阵,实现坐标连续变换,根据左乘规则,右边矩阵先作用于点,作用顺 ...
- RabbitMQ-初见
目录 什么是中间件 消息队列协议 AMQP协议 MQTT协议 OpenMessage协议 Kafka协议 消息队列持久化 消息的分发策略 消息队列高可用和高可靠 什么是高可用机制 集群模式1 - Ma ...
- 通过 layout 探索 kratos 运行原理
创建项目 首先需要安装好对应的依赖环境,以及工具: go 下载 protoc go install google.golang.org/protobuf/cmd/protoc-gen-go@lates ...
- Spring(一)——概述
一.概述 1.介绍 struts 是 web 框架 (jsp/action/actionfrom).hibernate是orm (Object Relational Mapping) 框架,处于持久层 ...
- SQL-UPDATE触发器练习
&练习一 如下所示三张表( student,grade,student_updata_before ): student表 grade表 Student_update_before表 # 触发 ...
- Postman调试Abp API
在swagger中查看登录需要用post方式访问,Abp需要用application/json方式调用 请求体 Postman调用方式 例:访问所有用户,调用Api地址为http://localhos ...
- EL-ADMIN学习笔记
一,支持接口限流,避免恶意请求导致服务层压力过大 常见的限流功能一般有两个关注点: 1.限流原则,即以什么样的条件对请求进行识别以及放行.常见的作法是给予每个调用API的系统不同的唯一编码,用于监控某 ...