P6499-[COCI2016-2017#2]Burza【状压dp】
正题
题目链接:https://www.luogu.com.cn/problem/P6499
题目大意
\(n\)个点的一棵树,开始有一个棋子在根处,开始先手选择一个点封锁,然后后手封锁棋子所在点然后移动一步到一个没有封锁的点,之后轮流进行。
先手不知道后手的移动,求先手有没有方法使得后手\(k\)步以内无法移动。
解题思路
后手无法走回头路所以要走到深度为\(k\)的节点,那么问题就变为了在\(k\)以内的每个深度选择一个节点切断,求能否使得树的深度不到达\(k\)。(显然第\(i\)步肯定是封锁深度为\(i\)的更优,因为如果选小于的后手已经跨过这个深度,选大的不如选它的父节点)。
然后n,k是400所以考虑状压dp。有一个结论就是如果\(n\leq k^2\)那么一定有解,因为如果\(n\leq k^2\)那么对于每个深度我们可以每次选择一个分叉的节点,然后去掉条路径一个没有分叉的边,这样每一次至少减少\(2k-1\)条边,然后深度(就是\(k\))减一,若干次以后就是\(k^2\)了。
这样就能把\(k\)缩到\(\sqrt n\)的复杂度,考虑状压。先在可能封锁的点上跑一个\(dfs\)序,然后设\(f_{i,s}\)表示目前决策到第\(dfn_i\)个点,每个深度被选择的情况为\(s\)是否合法。
然后如果选择一个点就直接跳到\(dfs\)序上该节点的子树末尾\(+1\)。然后强制选叶子就好了。
时间复杂度\(O(n2^{min\{k,\sqrt n\}})\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=410;
struct node{
int to,next;
}a[N<<1];
int n,k,tot,cnt,ls[N],dep[N],dfn[N],ed[N];
bool mark[N],f[N][1<<20];
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
bool dfs(int x,int fa){
dep[x]=dep[fa]+1;
if(dep[x]+1==k)return mark[x]=1;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa)continue;
mark[x]|=dfs(y,x);
}
return mark[x];
}
void dfc(int x,int fa){
if(!mark[x])return;dfn[cnt++]=x;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa)continue;
dfc(y,x);
}
ed[x]=cnt;return;
}
int main()
{
scanf("%d%d",&n,&k);
if(n<=k*k)return puts("DA")&0;
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
addl(x,y);addl(y,x);
}
dep[0]=-2;dfs(1,0);dfc(1,0);
int MS=(1<<k);f[1][0]=1;
for(int i=1;i<cnt;i++){
int x=dfn[i];
for(int s=0;s<MS;s++){
if(dep[x]!=k-1)f[i+1][s]|=f[i][s];
if(!((s>>dep[x])&1))
f[ed[x]][s|(1<<dep[x])]|=f[i][s];
}
}
bool ans=0;
for(int s=0;s<MS;s++)
ans|=f[cnt][s];
puts(ans?"DA":"NE");
return 0;
}
P6499-[COCI2016-2017#2]Burza【状压dp】的更多相关文章
- 洛谷 P6499 - [COCI2016-2017#2] Burza(状压 dp)
题面传送门 一道挺有意思的思维题(?) 首先我们假设根节点深度为 \(0\),那么 Daniel 的目标显然就是堵住一些节点使得 Stjepan 不能移动到深度为 \(k\) 的节点,Stjepan ...
- 「BZOJ 5010」「FJOI 2017」矩阵填数「状压DP」
题意 你有一个\(h\times w\)的棋盘,你需要在每个格子里填\([1, m]\)中的某个整数,且满足\(n\)个矩形限制:矩形的最大值为某定值.求方案数\(\bmod 10^9+7\) \(h ...
- 【状压dp】互不侵犯KING
互不侵犯KING Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3866 Solved: 2264[Submit][Status][Discuss] ...
- 简单状压dp的思考 - 最大独立集问题和最大团问题 - 贰
接着上文 题目链接:最大独立集问题 上次说到,一种用状压DP解决任意无向图最大团问题(MCP)的方程是: 注:此处popcountmax代表按照二进制位下1的个数作为关键字比较,即选择二进制位下1的个 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- nefu1109 游戏争霸赛(状压dp)
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...
- poj3311 TSP经典状压dp(Traveling Saleman Problem)
题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...
- [NOIP2016]愤怒的小鸟 D2 T3 状压DP
[NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...
- 【BZOJ2073】[POI2004]PRZ 状压DP
[BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...
随机推荐
- spring4整合hibernate5以及出现的问题解决办法
每一次的学习,都是一小步一小步的进行的,学习语言,重要的是能把hello world写出来 以及在学习过程中出现的问题能够及时的记录并总结 spring目前最新的版本是4.3,而hibernate是5 ...
- WPF学习笔记二 依赖属性实现原理及性能分析
在这里讨论依赖属性实现原理,目的只是学习WPF是怎么设计依赖属性的,同时更好的使用依赖属性. 首先我们来思考一个简单的问题:我们希望能验证属性的值是否有效,属性变更时进行自己的处理.回顾一下.net的 ...
- linux下C编程初篇
对于程序设计员来说,makefile是我们绕不过去的一个坎.可能对于习惯Visual C++的用户来说,是否会编写makefile无所谓.毕竟工具本身已经帮我们做好了全部的编译流程.但是在Linux上 ...
- JDK 5.0新特性
时间:2016-11-5 12:03 JDK5.0新特性 泛型.枚举.静态导入.自动拆装箱.增强for循环.可变参数1.Junit单元测试 测试的对象是类中的一个方法. junit不 ...
- openCV入门系列教学(一) 图像的读取、展示与保存
序言 笔者最近做了两个CV领域的项目,因为数据量不足所以主要使用的是传统的CV方法.这时候不得不夸一句opencv库,让复杂的算法原理变得如此简单(调包调参侠表示很骄傲).所以闲暇下来对opencv的 ...
- 将 VS2017下开发的程序, 部署到其他电脑上运行
关键步骤:设置Release,如下图 如果无法直接执行,则安装ALI213-Microsoft.Visual.C++.2017.Redistributable.Package.x86.x64
- linux centos7 模拟垃圾回收站功能以及 crontab 定时任务的设置
2021-08-04 1. 安装 环境:CentOS Linux release 7.5.1804 (Core) # 将 saferm.sh 拷贝到 /bin 目录下面 git clone git:/ ...
- .Net Core 中的选项Options
.NetCore的配置选项建议结合在一起学习,不了解.NetCore 配置Configuration的同学可以看下我的上一篇文章 [.Net Core配置Configuration源码研究] 由代码开 ...
- 手写 lodash/get、lodash/set 方法
动机:平时写js代码时经常遇到要使用 lodash 中 _.get 和 _.set 的情况,每次使用都要引用 lodash,总感觉很烦,能不能自己实现一个简单的方法来实现一样的功能呢? get 方法实 ...
- K8S命令行工具——kubectl
1.kubectl概述 2.kubectl命令的语法 例子: 3.kubectl子命令使用分类 (1)基础命令 (2)部署和集群管理命令 (3)故障和调试命令 (4)其他命令 4.kubectl命令例 ...