正题

题目链接:https://www.luogu.com.cn/problem/P3190


题目大意

\(n*m\)的网格上有权值,求一条权值和最大的不交回路。

\(1\leq n\leq 100,1\leq m\leq 6\)


解题思路

经典的棋盘形插头\(dp\),和模板不同的地方是求最大权值和并且不用铺满整张图。

那么在没有插头的地方可以选择不新建插头就好了,需要注意判断边界\(j=m\)和\(i=n\)的情况。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int P=333331;
struct node{
int to,next;
}a[P<<1];
int n,m,v[110][10],bit[10];
int t[2],S[2][P],dp[2][P];
int ans,tot,o,ls[P];
void Add(int s,int v){
int x=s%P;
for(int i=ls[x];i;i=a[i].next)
if(S[o][a[i].to]==s)
{dp[o][a[i].to]=max(dp[o][a[i].to],v);return;}
t[o]++;S[o][t[o]]=s;dp[o][t[o]]=v;
a[++tot].to=t[o];a[tot].next=ls[x];ls[x]=tot;
return;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&v[i][j]);
for(int i=0;i<=m;i++)bit[i]=(1<<(i<<1));
t[o]=1;ans=-2147483647;
for(int i=1;i<=n;i++){
for(int j=1;j<=t[o];j++)S[o][j]<<=2;
for(int j=1;j<=m;j++){
o=!o;t[o]=tot=0;
memset(ls,0,sizeof(ls));
int s,w,dpl,rpl;
for(int k=1;k<=t[!o];k++){
s=S[!o][k];w=dp[!o][k];
dpl=(s>>(j<<1))%4;
rpl=(s>>(j-1<<1))%4;
if(!dpl&&!rpl){
Add(s,w);
if(i!=n&&j!=m)Add(s+bit[j-1]+2*bit[j],w+v[i][j]);
}
else if(!dpl&&rpl){
if(i!=n)Add(s,w+v[i][j]);
if(j!=m)Add(s-rpl*bit[j-1]+rpl*bit[j],w+v[i][j]);
}
else if(dpl&&!rpl){
if(i!=n)Add(s-dpl*bit[j]+dpl*bit[j-1],w+v[i][j]);
if(j!=m)Add(s,w+v[i][j]);
}
else if(dpl==1&&rpl==1){
int c=1;
for(int p=j+1;p<=m;p++){
if((s>>(p<<1))%4==1)c++;
if((s>>(p<<1))%4==2)c--;
if(!c){Add(s-bit[j]-bit[j-1]-bit[p],w+v[i][j]);break;}
}
}
else if(dpl==2&&rpl==2){
int c=1;
for(int p=j-2;p>=0;p--){
if((s>>(p<<1))%4==2)c++;
if((s>>(p<<1))%4==1)c--;
if(!c){Add(s-2*bit[j]-2*bit[j-1]+bit[p],w+v[i][j]);break;}
}
}
else if(dpl==1&&rpl==2)
Add(s-bit[j]-2*bit[j-1],w+v[i][j]);
else if(dpl==2&&rpl==1){
if(dpl*bit[j]+rpl*bit[j-1]==s)
ans=max(ans,w+v[i][j]);
}
}
}
}
printf("%d\n",ans);
return 0;
}

P3190-[HNOI2007]神奇游乐园【插头dp】的更多相关文章

  1. bzoj 1187: [HNOI2007]神奇游乐园 插头dp

    1187: [HNOI2007]神奇游乐园 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 668  Solved: 337[Submit][Statu ...

  2. 【BZOJ1187】[HNOI2007]神奇游乐园 插头DP

    [BZOJ1187][HNOI2007]神奇游乐园 Description 经历了一段艰辛的旅程后,主人公小P乘坐飞艇返回.在返回的途中,小P发现在漫无边际的沙漠中,有一块狭长的绿地特别显眼.往下仔细 ...

  3. 洛谷 P3190 [HNOI2007]神奇游乐园 解题报告

    P3190 [HNOI2007]神奇游乐园 Description 给你一个 \(m * n\) 的矩阵,每个矩阵内有个权值\(V(i,j)\) (可能为负数),要求找一条回路,使得每个点最多经过一次 ...

  4. 洛谷P3190 [HNOI2007]神奇游乐园(插头dp)

    传送门 大概是算第一道自己做出来的插头dp? (虽然都是照着抄板子的) (虽然有个地方死活没调出来最后只能看题解才发现自己错在哪里的) 我就当你们都会插头dp了…… 因为必须得是一条路径,所以扫描线上 ...

  5. [HNOI2007][bzoj1187] 神奇游乐园 [插头dp]

    题面: 传送门 给定一个四联通棋盘图,每个格子有权值,求一条总权值最大的回路 思路: 插头dp基础教程 棋盘? 回路? n,m<=10? 当然是插头dp啦~\(≧▽≦)/~ 然后发现这道题并不是 ...

  6. P3190 [HNOI2007]神奇游乐园

    传送门 第一道插头 $dp$ 由于讲不清楚所以假装各位早就会插头 $dp$ 了 首先要的是一个闭合回路,所以可以用括号表示法表示状态,然后大力分类讨论 $1.$ 没有右插头和下插头 那么我们可以啥也不 ...

  7. [bzoj1187][HNOI2007]神奇游乐园_插头dp

    bzoj-1187 HNOI-2007 神奇游乐园 题目大意:经历了一段艰辛的旅程后,主人公小P乘坐飞艇返回.在返回的途中,小P发现在漫无边际的沙漠中,有一块狭长的绿地特别显眼.往下仔细一看,才发现这 ...

  8. BZOJ1187 [HNOI2007]神奇游乐园(插头dp)

    麻麻我会写插头dp了! 推荐陈丹琦论文:https://wenku.baidu.com/view/3e90d32b453610661ed9f4bd.html 破题调一年 #include <cs ...

  9. [HNOI2007]神奇游乐园(插头DP)

    题意:n*m的矩阵内值有正有负,找一个四连通的简单环(长度>=4),使得环上值的和最大. 题解:看到2<=m<=6和简单环,很容易想到插头DP,设f[i][j][k]表示轮廓线为第i ...

  10. 1187: [HNOI2007]神奇游乐园 - BZOJ

    Description 经历了一段艰辛的旅程后,主人公小P乘坐飞艇返回.在返回的途中,小P发现在漫无边际的沙漠中,有一块狭长的绿地特别显眼.往下仔细一看,才发现这是一个游乐场,专为旅途中疲惫的人设计. ...

随机推荐

  1. docker-compose部署mysql,redis,rabbitmq

    version: '3' services: mysql: image: mysql:5.7.31 container_name: mysql restart: always command: --c ...

  2. linux使用xampp安装MediaWiki环境

    1.下载并安装xampp 下载xampp 在下载页面下载. 放置到相应目录 将xampp-linux-x64-5.6.3-0-installer.run文件复制到部署机器的/root目录下 安装 [r ...

  3. 【C语言】第5章 循环结构程序设计

    第5章 循环结构程序设计 三种基本循环控制结构 使用while语句实现循环 先判断条件表达式,后执行循环体语句 while (循环条件表达式) { 循环体 } 用do-while语句实现循环 先无条件 ...

  4. spring支持的Bean的作用域

    Sigleton:单例模式,在整个Spring IoC容器中,使用Sigleton定义Bean将有一个实例 prototype:原型模式,每次通过容器的getBean方法获取propertype都将产 ...

  5. servlet+Ajax开发web工程

    前言 因为目前基本已经不会再用到servlet+jsp开发项目了,基本都是使用框架来开发:我们常用的框架都是基于servlet来封装的,该阶段只需要了解一下tomcat如何使用,servlet的生命周 ...

  6. java 后台解密小程序前端传过来的信息,解密手机号

    package com.llny.controller; import com.google.gson.Gson; import com.google.gson.JsonObject; import ...

  7. Python - 面向对象编程 - __del__() 析构方法

    del 语句 Python 提供了 del 语句用于删除不再使用的变量 语法 del 表达式 删除变量的栗子 var = "hello" del var print(var) # ...

  8. SNMP协议之序言

    最近两周公司分配一个任务:使用snmp协议做一个网管,来配置我们的产品.这可以说是我第一次听说这个协议,我问了一下周围的同事这是个什么协议,同事说"简单网络管理协议",其实这个协议 ...

  9. 解决FTPClient下载网络文件线程挂起问题

    今天在windows上调试FTP下载文件时,出险线程假死,代码如下: if (inputStream != null) { byte[] data = null; ByteArrayOutputStr ...

  10. ABP VNext发布遇到的坑

    本地调试没有问题,发布后通过Token调用其他API时,出现返回JSON中提示:Authorization failed! Given policy has not granted. 需要修改apps ...