P3980-[NOI2008]志愿者招募【费用流】
正题
题目链接:https://www.luogu.com.cn/problem/P3980
题目大意
\(n\)天,第\(i\)天需要\(A_i\)个志愿者。有\(m\)种志愿者,第\(i\)种从\(s_i\)天服务到\(t_i\)天,需要\(c_i\)元的费用。
求满足条件的最小费用
\(1\leq n\leq 1000,1\leq m\leq 10000\)
解题思路
考虑费用流
如果雇佣了\(s_i\)天到\(t_i\)天的话那么就相当于将这段范围\(A_i\)的值减一,注意到是区间的\(1\)需要\(c_i\)的费用,那么肯定这个条件是压缩成一条边的,也就是\(s_i\)向\(t_i+1\)连接费用为\(1\)的边。
这样的话考虑如何满足条件,注意到是减一也就是抽走一条经过\(s_i\)到\(t_i\)的流量,也就是对于这些流量的限制。
建立\(n\)个点,\(i\)向\(i+1\)连接流量为\(T-A_i\)(\(T\)是一个很大的数就可以了)表示至少需要抽走\(A_i\)的流量就好了。
然后跑费用流
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const ll N=1100,T=(1ll<<31),inf=1e18;
struct node{
ll to,next,w,c;
}a[N*22];
ll n,m,s,t,tot=1,ans,ls[N],f[N],mf[N],pre[N];
bool v[N];queue<int> q;
void addl(ll x,ll y,ll w,ll c){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;a[tot].c=c;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;a[tot].c=-c;
return;
}
bool SPFA(){
memset(f,0x3f,sizeof(f));
q.push(s);f[s]=0;v[s]=1;mf[s]=T;
while(!q.empty()){
ll x=q.front();q.pop();v[x]=0;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(a[i].w&&f[x]+a[i].c<f[y]){
f[y]=f[x]+a[i].c;pre[y]=i;
mf[y]=min(mf[x],a[i].w);
if(!v[y])v[y]=1,q.push(y);
}
}
}
return (f[t]<inf);
}
void Updata(){
ll x=t;ans+=mf[t]*f[t];
while(x!=s){
a[pre[x]].w-=mf[t];
a[pre[x]^1].w+=mf[t];
x=a[pre[x]^1].to;
}
return;
}
signed main()
{
scanf("%lld%lld",&n,&m);
s=n+2;t=s+1;
addl(s,1,T,0);
for(ll i=1;i<=n;i++){
ll x;
scanf("%lld",&x);
addl(i,i+1,T-x,0);
}
for(ll i=1;i<=m;i++){
ll s,t,c;
scanf("%lld%lld%lld",&s,&t,&c);
addl(s,t+1,T,c);
}
addl(n+1,t,T,0);
while(SPFA())
Updata();
printf("%lld\n",ans);
return 0;
}
P3980-[NOI2008]志愿者招募【费用流】的更多相关文章
- P3980 [NOI2008]志愿者招募 费用流 (人有多大胆地有多大产
https://www.luogu.org/problemnew/show/P3980 感觉费用流比网络流的图更难想到,要更大胆.首先由于日期是连续的,所以图中的点是横向排列的. 这道题有点绕道走的意 ...
- P3980 [NOI2008]志愿者招募 (费用流)
题意:最多1000天 每天需要至少ai个工人施工 有10000种工人可以雇佣 每种工人可以工作si到ti天 雇佣一个的花费是ci 问怎样安排使得施工花费最少 思考:最直白的建模方式 就是每种工人可以和 ...
- BZOJ 1061: [Noi2008]志愿者招募 费用流
1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...
- [BZOJ1061] [Noi2008] 志愿者招募 (费用流)
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...
- [NOI2008]志愿者招募 (费用流)
大意: $n$天, 第$i$天要$a_i$个志愿者. $m$种志愿者, 每种无限多, 第$i$种工作时间$[s_i,t_i]$花费$c_i$, 求最少花费. 源点$S$连第一天, 容量$INF$ 第$ ...
- Vijos1825 NOI2008 志愿者招募 费用流
Orz ByVoid大神的题解:https://www.byvoid.com/blog/noi-2008-employee/ 学习网络流建图的好题,不难想到线性规划的模型,不过利用模型的特殊性,结合网 ...
- 【洛谷】P3980 [NOI2008]志愿者招募
[洛谷]P3980 [NOI2008]志愿者招募 我居然现在才会用费用流解线性规划-- 当然这里解决的一类问题比较特殊 以式子作为点,变量作为边,然后要求就是变量在不同的式子里出现了两次,系数一次为+ ...
- 从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流)
从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流) 题面 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运 ...
- [NOI2008][bzoj1061] 志愿者招募 [费用流+巧妙的建图]
题面 传送门 思路 引入:网络流? 看到这道题,第一想法是用一个dp来完成决策 但是,显然这道题的数据并不允许我们进行dp,尤其是有10000种志愿者的情况下 那么我们就要想别的办法来解决: 贪心?这 ...
- luogu P3980 [NOI2008]志愿者招募
传送门 网络流又一神仙套路应用 首先考虑列不等式,设\(x_i\)为第i种人的个数,记\(b_{i,j}\)为第i种人第j天是否能工作,那么可以列出n个不等式,第j个为\(\sum_{i=1}^{m} ...
随机推荐
- @ImportResource-SpringBoot使用xml配置Bean
前言 SpringBoot推荐使用注解的方式去声明bean,但还是提供了xml的方式去加载bean 一.创建要声明为bean的实体类 WzqEntity.java package com; /** * ...
- LeetCoded第25题题解--K个一组翻转链表--java--链表
链表 单链表:链表中的每个元素实际上是一个单独的对象,而所有对象都通过每个元素的引用字段链接在一起. 双链表:与单链表不同的是,双链表的每个节点都含有两个引用字段. 链表优点 灵活分配内存空间 能在O ...
- Javascript - Vue - webpack + vue-cil
cnpm(node package manager)和webpack模块 npm是运行在node.js环境下的包管理工具(先安装node.js,再通过命令 npm install npm -g 安装n ...
- JDBC中级篇——批处理和PreparedStatement对有sql缓冲区的数据库的友好,测试
注意:其中的JdbcUtil是我自定义的连接工具类:代码例子链接: package a_batch; import util.JdbcUtil; import java.sql.Connection; ...
- JavaWeb之分页查询
时间:2016-12-11 01:41 1.分页的优点: 只查询一页,不需要查询所有数据,能够提高效率.2.分页数据 页面的数据都是由Servlet传递的 * 当前页:pageC ...
- 微信小程序学习笔记一 小程序介绍 & 前置知识
微信小程序学习笔记一 1. 什么是小程序? 2017年度百度百科十大热词之一 微信小程序, 简称小程序, 英文名 Mini Program, 是一种不需要下载安装即可使用的应用 ( 张小龙对其的定义是 ...
- linux系统下深度学习环境搭建和使用
作为一个AI工程师,对Linux的一些技能的掌握也能从一定层面反应工程师的资深水平. 要求1:基于SSH的远程访问(本篇文章) 能用一台笔记本电脑,远程登陆一台linux服务器 能随时使用笔记本电脑启 ...
- CSS 是啥?前端小白入门级理解
What is CSS? CSS stands for Cascading Style Sheets CSS describes how HTML elements are to be display ...
- 解决win10 cmd运行python弹出windows应用商店下python应用程序
方法一: 1.我一开始下载完python后,忘记下载到哪个位置,在win10底下输入框搜索python,点击打开文件所在位置,所在位置是python快捷键的位置,直接复制进行环境配置 配置完环境变量后 ...
- uboot命令简介
uboot下的命令行 1.典型嵌入式linux系统启动过程: 嵌入式系统上电后先执行uboot.然后uboot负责初始化DDR,初始化Flash,然后将OS从Flash中读取到DDR中,然后启动OS( ...