题意

给出\(n\),求有几个\(W\)形的\(n\)的全排列(震荡)

思路

可以变求出第二个数比第一个数大的,再翻倍就好

设\(f[i][j]\)表示\(i\)个数中\(j\)个数不符合序列

转移时\(f[i][j]\)时,有三种情况

  • 1.不变到\(f[i+1][j]\),只有一种插入方法:\(i\)为偶数时,插入到倒数第二个;\(i\)为奇数时,插入到最后
  • 2.减少一个不符合的到\(f[i+1][j-1]\):将\(i+1\)插入到不符合序列的数前,共有\(j\)种
  • 3.增加一个不符合的:将\(i+1\)插入到已经符合的数前,共有\(i-j\)种(\(i+1-(j-1)\))

所以就可以写一份极简的代码

#include <bits/stdc++.h>
int n,p;
int f[4205][4205];
int main(){
scanf("%d%d",&n,&p);
f[1][0]=1;
for (int i=1;i<n;i++)
for (int j=0;j<=i;j++){
f[i+1][j]=(f[i+1][j]+f[i][j])%p;
f[i+1][j+1]=(f[i+1][j+1]+1ll*f[i][j]*(i-j))%p;
if (j) f[i+1][j-1]=(f[i+1][j-1]+1ll*f[i][j]*j)%p;
}
printf("%d",(1ll*f[n][0]<<1)%p);
}

对了结果要模\(p\)

LG2467 地精部落的更多相关文章

  1. BZOJ-1925 地精部落 烧脑DP+滚动数组

    1925: [Sdoi2010]地精部落 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1053 Solved: 633 [Submit][Status ...

  2. BZOJ 1925: [Sdoi2010]地精部落( dp )

    dp(i,j)表示1~i的排列中, 以1~j为开头且开头是下降的合法方案数 这种数列具有对称性, 即对于一个满足题意且开头是上升的n的排列{an}, 令bn = n-an+1, 那么{bn}就是一个满 ...

  3. BZOJ_1925_[Sdoi2010]地精部落_递推

    BZOJ_1925_[Sdoi2010]地精部落_递推 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 ...

  4. 【BZOJ1925】[SDOI2010]地精部落(动态规划)

    [BZOJ1925][SDOI2010]地精部落(动态规划) 题面 BZOJ 洛谷 题解 一道性质\(dp\)题.(所以当然是照搬学长PPT了啊 先来罗列性质,我们称题目所求的序列为抖动序列: 一个抖 ...

  5. 洛谷 P2467 地精部落 解题报告

    P2467 [SDOI2010]地精部落 题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为\(N\)的山脉\(H\)可分为从左到右的\(N ...

  6. 1925: [Sdoi2010]地精部落

    1925: [Sdoi2010]地精部落 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1929 Solved: 1227 [Submit][Statu ...

  7. 「bzoj1925」「Sdoi2010」地精部落 (计数型dp)

    「bzoj1925」「Sdoi2010」地精部落---------------------------------------------------------------------------- ...

  8. 【BZOJ1925】[Sdoi2010]地精部落 组合数+DP

    [BZOJ1925][Sdoi2010]地精部落 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从 ...

  9. 【bzoj1925】地精部落[SDOI2010](dp)

    题目传送门:1925: [Sdoi2010]地精部落 这道题,,,首先可以一眼看出他是要我们求由1~n的排列组成,并且抖来抖去的序列的方案数.然后再看一眼数据范围,,,似乎是O(n^2)的dp?然后各 ...

随机推荐

  1. 又谈F分布

    今天看到一篇不错的博文,有感,记录下来,相对来说讲到了本质,也很容易理解.https://www.cnblogs.com/think-and-do/p/6509239.html 首先,老生常谈,还是那 ...

  2. 关于ManualResetEvent的实例分析

    最近用WPF开发时使用多个定时器处理时需要实例化N多个DispatcherTimer,而且全部暴露在程序外部,显得很冗杂,例如下面的例子:用到的两个定时器就要实例化两个DispatcherTimer, ...

  3. LeetCode 腾讯精选50题--二叉树中的最大路径和

    二叉树中的最大路径和 题目描述 给定一个非空二叉树,返回器最大路径和,路径指一条从任意节点出发,到达任意节点的序列,该路径至少包含一个节点,且不一定经过根节点 解题思路 树这一类数据结构我还不是很熟悉 ...

  4. Linux下mysql不区分大小写设置

    Linux环境下的MySQL数据库的表名默认是区分大小写的 Windows环境下的MySQL数据库的表名默认是不区分大小写的 所以Linux下想mysql不区分下大写可以查看/etc/my.cnf文件 ...

  5. otool随笔测试

    otool 工具 查看库/反编译等二进制信息 1 依赖库查询 otool -L Payload/XXX.app/XXX 2 查看该应用是否砸壳 otool -l Payload/XXX.app/XXX ...

  6. Spring Cloud(八)高可用的分布式配置中心 Spring Cloud Config

    在分布式系统中,由于服务数量巨多,为了方便服务配置文件统一管理,实时更新,所以需要分布式配置中心组件.在Spring Cloud中,有分布式配置中心组件spring cloud config,它支持配 ...

  7. 【Java并发】基础

    一.概述 1.1 线程与进程区别 1.2 多线程引发的性能问题 二.多线程创建方式 2.1 第一种-继承Thread类 2.2 第二种-实现Runnable接口 2.3 第三种-实现Callable接 ...

  8. 第一章、接口规范之Restful规范

    阅读目录 2.1 数据的安全保障 2.2 接口特征表现 2.3 多数据版本共存 2.4 数据即是资源 2.5 资源操作由请求方式决定 3.1 正常响应 3.2 重定向响应 3.3 客户端异常 3.4 ...

  9. apache安装phpMyAdmin

    安装phpMyAdmin 我这里是LAMP环境 安装httpd,和phpMyAdmin,数据库可以yum安装看你自己情况选择安装方式 $ yum -y install httpd phpMyAdmin ...

  10. Nexus Repository Manager OSS 2 配置阿里云私服做代理的坑

    安装 搭建 Nexus 私服很简单,官网下载,解压: 使用管理员权限打开cmd: > cd nexus---bundle\nexus--\bin > nexus.bat install # ...