HDU 4085 斯坦纳树+DP
https://cn.vjudge.net/problem/HDU-4085
给你n,m,k ,分别表示有n个点,m条边,每条边有一个权值,表示修复这条边需要的代价
从前k个点中任取一个使其和后k个点中的某一个点,通过边连接,并且必须是一一对应,问最小的代价是多少。
先用斯坦纳树模板求出f[i][1<<k] 然后用dp[i]表示所有点为根的情况下连通状态为i的最小花费
这样我们就可以从1dp到1<<k得到答案 注意dp之前要先判总状态是否合法 再判子集是否合法 最后再进行dp更新
#include<bits/stdc++.h>
#define N 6003
#define inf 1000000000
using namespace std;
int n, m, k, tot;
int point[N], next1[N], v[N], len[N];
int f[][( << )], mi[], can[N], dp[( << )];
queue<int> p;
void add(int x, int y, int z) {
tot++;
next1[tot] = point[x];
point[x] = tot;
v[tot] = y;
len[tot] = z;
tot++;
next1[tot] = point[y];
point[y] = tot;
v[tot] = x;
len[tot] = z;
}
void spfa(int sta) {
while (!p.empty()) {
int now = p.front();
p.pop();
for (int i = point[now]; i; i = next1[i]) {
if (f[v[i]][sta] > f[now][sta] + len[i]) {
f[v[i]][sta] = f[now][sta] + len[i];
if (!can[v[i]]) {
can[v[i]] = ;
p.push(v[i]);
}
}
}
can[now] = ;
}
}
bool check(int sta) { //判断当前的状态是否满足一一对应关系
int ans = ;
for (int i = ; i < k; i++) {
if (sta & ( << i))
ans++;
if (sta & ( << (i + k)))
ans--;
}
return (ans == );
}
int main() {
int t;
scanf("%d", &t);
mi[] = ;
for (int i = ; i <= ; i++)
mi[i] = mi[i - ] * ;
for (int T = ; T <= t; T++) {
scanf("%d%d%d", &n, &m, &k);
tot = ;
memset(point, , sizeof(point));
memset(next1, , sizeof(next1));
for (int i = ; i <= m; i++) {
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
add(x, y, z);
}
for (int i = ; i <= n; i++)
for (int j = ; j < mi[]; j++)
f[i][j] = inf;
for (int i = ; i <= k; i++)
f[i][mi[i - ]] = ;
int t = k;
for (int i = n - k + ; i <= n; i++)
f[i][mi[t]] = , t++;
for (int sta = ; sta < mi[t]; sta++) {
for (int i = ; i <= n; i++) {
for (int s = sta & (sta - ); s; s = sta & (s - )) {
int t = f[i][sta - s] + f[i][s];
f[i][sta] = min(f[i][sta], t);
}
if (f[i][sta] != inf)
p.push(i), can[i] = ;
}
spfa(sta);
}
for (int sta = ; sta < mi[t]; sta++) {
dp[sta] = inf;
for (int i = ; i <= n; i++)
dp[sta] = min(dp[sta], f[i][sta]);
}
for (int sta = ; sta < mi[t]; sta++)
if (check(sta))
for (int s = sta & (sta - ); s; s = sta & (s - ))
if (check(s))
dp[sta] = min(dp[sta], dp[s] + dp[sta - s]);
if (dp[mi[t] - ] == inf)
printf("No solution\n");
else
printf("%d\n", dp[mi[t] - ]);
}
}
HDU 4085 斯坦纳树+DP的更多相关文章
- HDU 4085 斯坦纳树
题目大意: 给定无向图,让前k个点都能到达后k个点(保护地)中的一个,而且前k个点每个需要占据后k个中的一个,相互不冲突 找到实现这个条件达到的选择边的最小总权值 这里很容易看出,最后选到的边不保证整 ...
- hdu 3311 斯坦纳树
思路:虚拟一个0号节点,将每个点建一条到0号节点的边,权值为挖井需要的价值.并要保证0号节点同另外n个寺庙一样被选择即可. 然后就是求斯坦纳树了. #include<map> #inclu ...
- 【hdu3311】Dig The Wells(斯坦纳树+dp)
传送门 题意: 给出\(n\)个重要点,还有其余\(m\)个点,\(p\)条边. 现在要在这\(n+m\)个点中挖几口水井,每个地方的费用为\(w_i\).连接边也有费用. 问使得这\(n\)个地点都 ...
- 【bzoj4006】[JLOI2015]管道连接(斯坦纳树+dp)
题目链接 题意: 给出\(n\)个点,\(m\)条边,同时给出\(p\)个重要的点以及对应特征. 现在要选出一些边,问使得这\(p\)个所有特征相同的点相连,问最小代价. 思路: 斯坦纳树的应用场景一 ...
- [WC2008]游览计划(斯坦纳树)
[Luogu4294] 题解 : 斯坦纳树 \(dp[i][j]\) 表示以\(i\)号节点为根,当前状态为\(j\)(与\(i\)连通的点为\(1\)) 当根\(i\)不改变时状态转移方程是: \( ...
- HDU 4085 Peach Blossom Spring 斯坦纳树 状态压缩DP+SPFA
状态压缩dp+spfa解斯坦纳树 枚举子树的形态 dp[i][j] = min(dp[i][j], dp[i][k]+dp[i][l]) 当中k和l是对j的一个划分 依照边进行松弛 dp[i][j] ...
- 【BZOJ2595】游览计划(状压DP,斯坦纳树)
题意:见题面(我发现自己真是越来越懒了) 有N*M的矩阵,每个格子有一个值a[i,j] 现要求将其中的K个点(称为关键点)用格子连接起来,取(i,j)的费用就是a[i,j] 求K点全部连通的最小花费以 ...
- hdu4085 Peach Blossom Spring 斯坦纳树,状态dp
(1)集合中元素表示(1<<i), i从0开始 (2)注意dp[i][ss] = min(dp[i][ss], dp[i][rr | s[i]] + dp[i][(ss ^ rr) | s ...
- HDU 3311 Dig The Wells(斯坦纳树)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3311 [题意] 给定k座庙,n个其他点,m条边,点权代表挖井费用,边权代表连边费用,问使得k座庙里 ...
随机推荐
- Mac下Unity使用Jenkins自动化打包
重要的事情说三遍:不要使用jenkins dmg安装包直接安装,用brew安装 PS:会有权限问题 重要的事情说三遍:不要使用jenkins dmg安装包直接安装,用brew安装 重要的事情说三遍: ...
- python3 安装pip提示没有distutils.util模块错误的解决
Python3 安装pip 提示ModuleNotFoundError: No module named 'distutils.util' 环境ubutun14,python版本是python3. ...
- 终端复用器tmux基础使用
简介对于经常操作Linux系统的同学来说,远程连接Linux服务器使用最多的工具是SecureCRT或者Xshell,而将此时的环境称为终端环境.Tmux是两个单词的缩写,即“Terminal Mul ...
- 《剑指offer》数组专题 (牛客10.22)
目录 // Q01 二维部分有序数组查找 [善用性质] // Q06 旋转数组中的最小元素 [二分 || 暴力] Q13 调整数组顺序使奇数位于偶数前 / Q19 顺时针打印矩阵 [使用边界变量] / ...
- 最新 用友网络java校招面经 (含整理过的面试题大全)
从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.用友网络等10家互联网公司的校招Offer,因为某些自身原因最终选择了用友网络.6.7月主要是做系统复习.项目复盘.Leet ...
- HIVE配置mysql metastore
HIVE配置mysql metastore hive中除了保存真正的数据以外还要额外保存用来描述库.表.数据的数据,称为hive的元数据.这些元数据又存放在何处呢? 如果不修改配置hive ...
- springBoot--组合注解RestController,GetMapping,PostMapping
一.RestController @RestController 是@Controller和@ResponseBody的缩写 二.@getMapping和PostMapping @GetMapping ...
- Connect4 Game
How this game is playe can be found at here. public class Connect4 { ][]; public Connect4(char[][] b ...
- [转帖] 修改nginx 默认上传文件大小
nginx默认会限制上传文件的大小为1M https://blog.51cto.com/ycgit/1563307 艺晨光关注0人评论12037人阅读2014-10-13 15:29:50 htt ...
- XSSFWorkbook对象 进行zip打包时 用write资源流自动关闭处理办法
XSSFWorkbook对象的write方法内会将传入的资源流自动关闭 导致下载excel失败 错误代码 OutputStream out = response.getOutputStream(); ...