1242 布局 2005年USACO

时间限制: 1 s

空间限制: 128000 KB

题目等级 : 黄金 Gold

题目描述 Description

当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。

一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)

你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号

奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离。

输入描述 Input Description

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

输出描述 Output Description

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

样例输入 Sample Input

4 2 1

1 3 10

2 4 20

2 3 3

样例输出 Sample Output

27

数据范围及提示 Data Size & Hint

分类标签 Tags

最短路 图论 USACO 2005年

/*
差分约束.
由约束条件可得
(1)dis[y1]-dis[x1]<=T.
(2)dis[x2]-dis[y2]<=-D.
(3)dis[i]-dis[i+1]>=0.
建图后spfa跑最短路.
*/
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define MAXN 500001
using namespace std;
struct data{int v,next,x;}e[MAXN*3];
int n,m,dis[MAXN],head[MAXN],cut,k,c[MAXN];
bool b[MAXN];
int read()
{
int x=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x;
}
void add(int u,int v,int z)
{
e[++cut].v=v;
e[cut].x=z;
e[cut].next=head[u];
head[u]=cut;
}
int spfa()
{
queue<int>q;q.push(1);
memset(dis,127/3,sizeof(dis));
dis[1]=0;
while(!q.empty())
{
int u=q.front();q.pop();b[u]=false;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v]>dis[u]+e[i].x)
{
dis[v]=dis[u]+e[i].x;
if(!b[v])
{
b[v]=true,q.push(v);c[v]++;
if(c[v]>=n) return -1;;
}
}
}
}
if(dis[n]==dis[0]) return -2;
return dis[n];
}
int main()
{
int x,y,z;
n=read(),m=read(),k=read();
for(int i=1;i<=m;i++)
{
x=read(),y=read(),z=read();
add(x,y,z);
}
for(int i=1;i<=k;i++)
{
x=read(),y=read(),z=read();
add(y,x,-z);
}
for(int i=1;i<=n;i++) add(i+1,i,0);
printf("%d",spfa());
return 0;
}

Codevs 1242 布局 2005年USACO(差分约束)的更多相关文章

  1. codevs 1242 布局(查分约束+SPFA)

    /* 查分约束. 给出的约束既有>= 又有<= 这时统一化成一种 Sb-Sa>=x 建边 a到b 权值为x Sb-Sa<=y => Sa-Sb>=-y 建边 b到a ...

  2. BZOJ1731:[USACO]Layout 排队布局(差分约束)

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  3. codevs 1183 泥泞的道路 (二分+SPFA+差分约束)

    /* 二分答案(注意精度) 对于每一个答案 有(s1+s2+s3...)/(t1+t2+t3...)>=ans 时符合条件 这时ans有变大的空间 对于上述不等式如果枚举每一条路显得太暴力 化简 ...

  4. [Usaco2005 dec]Layout 排队布局 差分约束

    填坑- 差分约束一般是搞一个不等式组,求xn-x1的最大最小值什么的,求最大值就转化成xa<=xb+w这样的,然后建图跑最短路(这才是最终约束的),举个例子 x1<=x0+2x2<= ...

  5. bzoj 1731: [Usaco2005 dec]Layout 排队布局 ——差分约束

    Description 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相 ...

  6. bzoj 1731 [Usaco2005 dec]Layout 排队布局——差分约束

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 对差分约束理解更深.还发现美妙博客:http://www.cppblog.com/me ...

  7. bzoj 1731 Layout 排队布局 —— 差分约束

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 差分约束: ML: dis[y] - dis[x] <= k,即 x 向 y 连 ...

  8. bzoj 1731: [Usaco2005 dec]Layout 排队布局【差分约束】

    差分约束裸题,用了比较蠢的方法,先dfs_spfa判负环,再bfs_spfa跑最短路 注意到"奶牛排在队伍中的顺序和它们的编号是相同的",所以\( d_i-d_{i-1}>= ...

  9. 布局(codevs 1242)

    题目描述 Description 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们 ...

随机推荐

  1. 去除element-ui table表格右侧滚动条的高度

    /* //element-ui table的去除右侧滚动条的样式 */ ::-webkit-scrollbar { width: 1px; height: 1px; } /* // 滚动条的滑块 */ ...

  2. SAS学习笔记41 宏变量存储及间接引用

    Macro Variables存储在“Symbol Table”中.它是由Macro Processor在SAS启动时自动创建并维护的.SAS提供了一张视图来供我们查看Symbol Table中的内容 ...

  3. 剑指offer(9)——用两个栈实现队列

    题目: 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数appendTail和deleteHead,分别完成在队列尾部插入结点和在队列头部删除结点的功能. 思路: 首先定义两个栈stack1. ...

  4. 三种redis数据导出导入方式

    推荐博客链接:https://www.cnblogs.com/hjfeng1988/p/7146009.html https://blog.csdn.net/qq_14945847/article/d ...

  5. 电子口岸 打开“退税联打印”时,PDF界面无法显示

    电子口岸 打开“退税联打印”时,PDF界面无法显示 咨询0571-95198 : IE要在8-10间,系统 要Win7 32B ---------------------参考------------- ...

  6. Autofac三种生命周期

    InstancePerLifetimeScope:同一个Lifetime生成的对象是同一个实例 SingleInstance:单例模式,每次调用,都会使用同一个实例化的对象:每次都用同一个对象: In ...

  7. ZROI17普及23-A.如烟题解--技巧枚举

    题目链接 因版权原因不予提供 分析 别看这是普及模拟赛,其实基本上是提高难度...像这题做NOIpT1的话也说的过去 有个很显然的暴力思路就是枚举c,a,b,时间复杂度\(O(N^3)\), 然后正解 ...

  8. uni-app入门学习

    什么是 uni-app 1 uni-app 是一个使用 Vue.js 开发跨平台应用的前端框架,开发者编写一套代码,可编译到iOS.Android.H5.小程序等多个平台. 官方的体验例子: 2 un ...

  9. vue基本语法概要(一)

    先看两种代码,再进行讲解 第一种格式: <template > <div> <div v-for=" item in sites "> < ...

  10. wince如何扫描条码并且在浏览器上查询数据

    这个挺简单的,winform也适用 public override void OnGetBarcode(string scanStr) { try { Process.Start("iesa ...