Python算法题(一)——青蛙跳台阶
题目一(青蛙跳台阶):
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
分析:
假设只有一级台阶,则总共只有一种跳法;
假设有两级台阶,则总共有两种跳法;
假设有n级台阶,那么第一步就要分为跳一步和跳两步:
跳一步,那么接下来就是跳n-1;
跳两步,那么接下来就是跳n-2;
所以,总数可以认为是f(n-1)+f(n-2)。
主要代码:
def frog(num):
if num <= 2:
return num
t1, t2 = 1, 2
for _ in range(3, num+1):
t1, t2 = t2, t1+t2
return t2
题目二(变态跳台阶):
一只青蛙一次可以跳上1级台阶,也可以跳上2级......它也可以跳上n阶。求该青蛙跳上一个n级的台阶总共有多少种跳法。
分析:
相比之前的跳台阶,这次可以从任意台阶跳上n级,所以总体来看与上一个问题差不多,只不过递归公式应该是各个台阶之和再加上直接跳上去的情况,所以总数应该是f(n-1)+f(n-2)+f(n-3)+...+f(2)+f(1)=2**n-1。
主要代码:
def frog(num):
if num==0:
return 0
return 2**(num-1)
拓展问题(矩形覆盖):
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
分析:
这个问题实际上就是普通的跳台阶问题,只不过说法不一样而已。
假设n=1,则只有一种方法;
假设n=2,则共有两种方法;
假设n=3,则分为两种情况:
第一次用一个矩形竖着覆盖(左图阴影),则剩下共有2(n-1)种方法
第二次用一个矩形横着覆盖(右图蓝色),那么下方区域只剩下图示一种方法,所以剩下1(n-2)种方法
最后可以看出求矩形覆盖问题和求青蛙跳台阶问题的通式是一样的,它们都符合斐波那契数列的通式,即f(n-1)+f(n-2)
主要代码:
def rectangle(num):
if num <= 2:
return num
t1, t2 = 1, 2
for _ in range(3, num+1):
t1, t2 = t2, t1+t2
return t2
通过这几个题目我们可以看出,其实很多题目都有共通之处,甚至有些题目的变题会更简单,所以我们需要从平时开始积累,日积月累下来,我们见识过的题目多了,自然而然写代码的水平就上去了。
Python算法题(一)——青蛙跳台阶的更多相关文章
- 【校招面试 之 剑指offer】第10-2题 青蛙跳台阶问题
题目1:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶.求该青蛙跳上一个n级台阶共有多少种跳法? 题目2:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶...也可以一次跳n级台阶.求该青蛙跳上一个 ...
- 青蛙跳台阶(Fibonacci数列)
问题 一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 思路 当n=1时,只有一种跳法,及f(1)=1,当n=2时,有两种跳法,及f(2)=2,当n= ...
- 青蛙跳台阶问题——剑指offer
题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶,求该青蛙跳上一个n级台阶总共有多少中跳法. http://www.nowcoder.com/books/coding-interviews?pa ...
- 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...
- 面试书上一些题目的整理:O(n)复杂度排序年龄 & 青蛙跳台阶
可以按照年龄的个数,设置99个桶,然后桶内处理. 青蛙跳台阶,每次1阶或者2阶,就是fib数 如果每次1到n阶,那么归纳法可得,是2^(n-1) 另外1*2 覆盖 2*n个矩阵的问题,仍然是Fib数. ...
- python算法题 python123网站单元四题目
目录 一:二分法求平方根 二:Collatz猜想 三:算24(只考虑满足,不考虑把所有情况找出来) 下面向大家介绍几个python算法题. 一:二分法求平方根 1.题目要求为 2.输入输出格式为 ...
- [剑指offer]10.斐波那契数列+青蛙跳台阶问题
10- I. 斐波那契数列 方法一 Top-down 用递归实现 def fibonacci(n): if n <= 0: return 0 if n == 1: return 1 return ...
- 剑指 Offer 10- II. 青蛙跳台阶问题
剑指 Offer 10- II. 青蛙跳台阶问题 Offer 10- II 题目描述: 动态规划方程: 循环求余: 复杂度分析: package com.walegarrett.offer; impo ...
- 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...
随机推荐
- code备忘
按空白符分隔(正则) String[] split = line.trim().split("\\s+");
- Android通讯-webSocket
概述 上一篇简单的认识了Socket以及他的使用,在学习过程中看到了WebSocket的身影,于是乎百度了一把,这货也可以做全双工的网络通讯,而且是html5提出来的新东西!程序员嘛!就是要对新的东西 ...
- Spring对象依赖关系
Spring中,如何给对象的属性赋值? [DI, 依赖注入] 1) 通过构造函数 2) 通过set方法给属性注入值 3) p名称空间 4)自动装配(了解) 5) 注解 package loade ...
- 将ejs模板文件的后缀换成html
1.app.js的头部定义ejs: var ejs = require('ejs'): 2注册html模板引擎: app.engine('html',ejs.__express); 3.将模板引擎换成 ...
- 【分布式事务】使用atomikos+jta解决分布式事务问题
一.前言 分布式事务,这个问题困惑了小编很久,在3个月之前,就间断性的研究分布式事务.从MQ方面,数据库事务方面,jta方面.近期终于成功了,使用JTA解决了分布式事务问题.先写一下心得,后面的二级提 ...
- SpringBoot: 9.整合thymeleaf(转)
1.创建maven项目,添加项目所需依赖 <!--springboot项目依赖的父项目--> <parent> <groupId>org.springframewo ...
- Docker参数 -i -t 的作用
Docker 参数 -i -t 的作用通常的解释是: -t让docker分配一个伪终端并绑定到容器的标准输入上, -i则让容器的标准输入保持打开. 问题所以通常都是这样的: sudo docker r ...
- uni-app 实现热更新
前端打包 app 即把写好的静态资源文件套壳打包成 app ,而热更新即下载并替换 app 内部的静态资源文件,实现 app 的版本升级. 在uni-app 中,我们是如何实现热更新的呢?下面来看代码 ...
- ASP.NET Core 入门笔记9,ASP.NET Core + Entity Framework Core 数据访问入门
一.前言 1.本教程主要内容 ASP.NET Core MVC 集成 EF Core 介绍&操作步骤 ASP.NET Core MVC 使用 EF Core + Linq to Entity ...
- Linux服务器上安装openoffice,以及安装字体文件
1.安装openoffice (1)将openoffice的linux安装包放到linux指定的文件下(一般放在opt下) (2)在安装包的目录下执行命令:tar -zxvf 对应的压缩包名字 (3) ...