这道题就是不要求强制在线的 BZOJ 3744 Gty的妹子序列

所以说离线做法有莫队,在线做法见上面连接.

这里贴出常数巨大O(nnlogn)O(n\sqrt nlogn)O(nn​logn)分块+树状数组+主席树做法.

CODE

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
template<typename T>inline void read(T &num) {
char ch; int flg = 1;
while((ch=getchar())<'0'||ch>'9')if(ch=='-')flg=-flg;
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
num*=flg;
}
const int MAXN = 50005;
int n, m, N, B, f[225][MAXN], a[MAXN], b[MAXN], bel[MAXN]; int ch[MAXN*20][2], sz[MAXN*20], rt[MAXN], tot;
void insert(int &i, int p, int l, int r, int x) {
sz[i=++tot] = sz[p] + 1;
if(l == r) return;
int mid = (l + r) >> 1;
if(x <= mid) ch[i][1] = ch[p][1], insert(ch[i][0], ch[p][0], l, mid, x);
else ch[i][0] = ch[p][0], insert(ch[i][1], ch[p][1], mid+1, r, x);
} int query(int x, int y, int l, int r, int L, int R) {
if(sz[x] == sz[y]) return 0;
if(L <= l && r <= R) return sz[y]-sz[x];
int mid = (l + r) >> 1;
if(R <= mid) return query(ch[x][0], ch[y][0], l, mid, L, R);
else if(L > mid) return query(ch[x][1], ch[y][1], mid+1, r, L, R);
return query(ch[x][0], ch[y][0], l, mid, L, R) + query(ch[x][1], ch[y][1], mid+1, r, L, R);
} int T[MAXN]; inline void upd(int x, int val) {
while(x) T[x] += val, x -= x&-x;
}
inline int qsum(int x) { int res = 0;
while(x <= N) res += T[x], x += x&-x;
return res;
}
inline int solve(int L, int R) {
if(L > R) swap(L, R);
int res = 0;
if(bel[L] == bel[R]) {
for(int i = L; i <= R; ++i)
res += qsum(a[i]+1), upd(a[i], 1);
for(int i = L; i <= R; ++i) upd(a[i], -1);
return res;
}
res = f[bel[L]+1][R];
for(int i = L; i <= bel[L]*B && i < R; ++i)
res += query(rt[i], rt[R], 1, N, 1, a[i]-1);
return res;
} int main () {
read(n); B = sqrt(n);
for(int i = 1; i <= n; ++i) read(a[i]), b[++N] = a[i];
sort(b + 1, b + N + 1);
N = unique(b + 1, b + N + 1) - b - 1;
for(int i = 1; i <= n; ++i) a[i] = lower_bound(b + 1, b + N + 1, a[i]) - b;
for(int i = 1; i <= n; ++i) {
bel[i] = (i-1)/B + 1;
insert(rt[i], rt[i-1], 1, N, a[i]);
}
for(int i = 1; i <= bel[n]; ++i) {
for(int j = (i-1)*B+1; j <= n; ++j)
f[i][j] = f[i][j-1] + qsum(a[j]+1), upd(a[j], 1);
memset(T, 0, (N+1)<<2);
}
int x, y;
read(m);
while(m--) {
read(x), read(y);
printf("%d\n", solve(x, y));
}
}

BZOJ 3289: Mato的文件管理 (区间查询逆序对)的更多相关文章

  1. bzoj 3289 Mato的文件管理 区间逆序对数(离线) 莫队

    题目链接 题意 给定\(n\)个数,\(q\)个询问,每次询问\([l,r]\)区间内的逆序对数. 思路 莫队+树状数组 注意离散化 Code #include <bits/stdc++.h&g ...

  2. Bzoj 3289: Mato的文件管理 莫队,树状数组,逆序对,离散化,分块

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1539  Solved: 665[Submit][Status][Di ...

  3. BZOJ 3289 Mato的文件管理(莫队+离散化求逆序数)

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MB Submit: 2171  Solved: 891 [Submit][Status][ ...

  4. BZOJ 3289: Mato的文件管理[莫队算法 树状数组]

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 2399  Solved: 988[Submit][Status][Di ...

  5. BZOJ 3289: Mato的文件管理

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 2368  Solved: 971[Submit][Status][Di ...

  6. BZOJ 3289: Mato的文件管理 莫队+BIT

    3289: Mato的文件管理 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号.为了防止他人偷拷,这些资料都是加密过的 ...

  7. bzoj 3289: Mato的文件管理 莫队+树状数组

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Mato同学 ...

  8. BZOJ 3289: Mato的文件管理 【莫队 + 树状数组】

    任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=3289 3289: Mato的文件管理 Time Limit: 40 Sec  Memory ...

  9. bzoj 3289 Mato的文件管理 树状数组+莫队

    Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4325  Solved: 1757[Submit][Status][Discuss ...

随机推荐

  1. 数据库连接池——C3P0&Druid(快速入门)

    数据库连接池--C3P0&Druid (一) 数据库连接池 每一个事物都有其存在的意义,在初学jdbc的时候,我们建立数据库连接对象后,会对其进行释放,但是数据库连接的建立和关闭是非常消耗资源 ...

  2. 在django中进行后台管理时插入外键数据时不显示值的问题

    在django的后台管理站点插入数据时,发现需要添加外键时,下拉框中不显示值 按照显示内容中的object,考虑这里应该是调用的模型类的objects对象方法,那么去models.py中对模型类添加一 ...

  3. Kafka 原理

    消息队列内部实现原理 两种消息传输方式 Kafka kafka 简介 kafka 集群角色 Kafka 工作流程分析 Kafka 生产过程分析 写入方式 分区(partition) 副本(replic ...

  4. base64转码java版

    package com.net.util; import java.io.FileInputStream; import java.io.FileOutputStream; import java.i ...

  5. typora的基本使用技巧汇总

    typora的基本使用技巧汇总 链接: https://www.jianshu.com/p/380005c8f104

  6. C++编写DLL文件

    动态链接库DLL文件与EXE文件一样也是可执行文件,但是DLL也被称为库,因为里面封装了各种类.函数之类的东西,就像一个库一样,存着很多东西,主要是用来调用的.调用方式主要分为两种:隐式(通过lib文 ...

  7. S02_CH13_ AXI_PWM 实验

    S02_CH13_ AXI_PWM 实验 当学习了上一章的协议介绍内容后,开发基于这些协议的方案已经不是什么难事了,关键的一点就是从零到有的突破了.本章就以AXI-Lite总线实现8路LED自定义IP ...

  8. hdu 1671 复习字典树

    #include<cstdio> #include<iostream> #include<string> #include<cstdlib> #defi ...

  9. Git详细操作

    Git详细操作 一.本地配置 1公钥钥配置 1.参考帮助文档:https://gitee.com/help/ 仓库管理 =公钥管理 =生成/添加SSH公钥 ssh-keygen -t rsa -C & ...

  10. 【图像处理 】 一、OSTU分割法

    图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有: 图像大小:M*N T为二值化的阈值: N0为灰度小于T的像素的个数,N0的平均灰度为μ0 N1 为灰度大于 ...