functools.lru_cache装饰器
functools.lru_cache装饰器
functools.lru_cache是非常实用的装饰器,他实现了备忘功能它把耗时的函数的结果保存起来,避免传入相同的参数时重复计算。LRU是Least Recently Used的缩写,表明缓存不会无限制增长,一段时间不用的缓存条目会被扔掉。
使用递归来生成斐波那契的第n个数
# clock 装饰器
import time
import functools
def clock(func):
@functools.wraps(func)
def clocked(*args, **kwargs):
t0 = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - t0
name = func.__name__
arg_lst = []
if args:
arg_lst.append(', '.join(repr(arg) for arg in args))
if kwargs:
pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())]
arg_lst.append(', '.join(pairs))
arg_str = ', '.join(arg_lst)
print('[%0.8fs] %s(%s) -> %r ' % (elapsed, name, arg_str, result))
return result
return clocked
# 利用递归方式生成斐波那契
@clock
def fibonacci(n):
if n < 2:
return n
return fibonacci(n - 2) + fibonacci(n - 1)
if __name__ == '__main__':
print(fibonacci(6))
'''
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00081015s] fibonacci(2) -> 1
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(2) -> 1
[0.00000000s] fibonacci(3) -> 2
[0.00081015s] fibonacci(4) -> 3
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(2) -> 1
[0.00081134s] fibonacci(3) -> 2
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(2) -> 1
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(2) -> 1
[0.00000000s] fibonacci(3) -> 2
[0.00000000s] fibonacci(4) -> 3
[0.00081134s] fibonacci(5) -> 5
[0.00162148s] fibonacci(6) -> 8
8
'''
可以看出使用递归会进行很多重复的计算,数据量增多时调用和计算更多。
使用functools.lru_cache优化
# clock 装饰器
import time
import functools
def clock(func):
@functools.wraps(func)
def clocked(*args, **kwargs):
t0 = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - t0
name = func.__name__
arg_lst = []
if args:
arg_lst.append(', '.join(repr(arg) for arg in args))
if kwargs:
pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())]
arg_lst.append(', '.join(pairs))
arg_str = ', '.join(arg_lst)
print('[%0.8fs] %s(%s) -> %r ' % (elapsed, name, arg_str, result))
return result
return clocked
# 利用递归方式生成斐波那契
@functools.lru_cache()
@clock
def fibonacci(n):
if n < 2:
return n
return fibonacci(n - 2) + fibonacci(n - 1)
if __name__ == '__main__':
print(fibonacci(6))
'''
[0.00000000s] fibonacci(0) -> 0
[0.00000000s] fibonacci(1) -> 1
[0.00000000s] fibonacci(2) -> 1
[0.00000000s] fibonacci(3) -> 2
[0.00000000s] fibonacci(4) -> 3
[0.00000000s] fibonacci(5) -> 5
[0.00000000s] fibonacci(6) -> 8
8
'''
可以看到使用lru_cache性能会显著改善。需要注意的是被lru_cache装饰的函数接受的参数必须是不可变类型。
functools.lru_cache装饰器的更多相关文章
- python中functools.wraps装饰器的作用
functools.wraps装饰器用于显示被包裹的函数的名称 import functools def node(func): #@functools.wraps(func) def wrapped ...
- python functools.wraps装饰器模块
# -*-coding=utf-8 -*-#实现一个函数执行后计算执行时间的功能 __author__ = 'piay' import time, functools def foo(): ''' 定 ...
- Python 标准库中的装饰器
题目描述 1.简单举例 Python 标准库中的装饰器 2.说说你用过的 Python 标准库中的装饰器 1. 首先,我们比较熟悉,也是比较常用的 Python 标准库提供的装饰器有:property ...
- 用functools.lru_cache实现Python的Memoization
现在你已经看到了如何自己实现一个memoization函数,我会告诉你,你可以使用Python的functools.lru_cache装饰器来获得相同的结果,以增加方便性. 我最喜欢Python的原因 ...
- python 函数结果缓存一段时间的装饰器
把函数结果缓存一段时间,比如读取一个mongodb,mongodb中的内容又在发生变化,如果从部署后,自始至终只去读一次那就感触不到变化了,如果每次调用一个函数就去读取那太频繁了耽误响应时间也加大了c ...
- Python基础:13装饰器
装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的应用有插入日志.性能测试.事务处理等.装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同 ...
- Fluent_Python_Part3函数即对象,07-closure-decoration,闭包与装饰器
第7章 函数装饰器和闭包 装饰器用于在源码中"标记"函数,动态地增强函数的行为. 了解装饰器前提是理解闭包. 闭包除了在装饰器中有用以外,还是回调式编程和函数式编程风格的基础. 1 ...
- python 装饰器(三):装饰器实例(一)
示例 7-15 定义了一个装饰器,它会在每次调用被装饰的函数时计时,然后把经过的时间.传入的参数和调用的结果打印出来.示例 7-15 一个简单的装饰器,输出函数的运行时间 import time de ...
- python函数与方法装饰器
之前用python简单写了一下斐波那契数列的递归实现(如下),发现运行速度很慢. def fib_direct(n): assert n > 0, 'invalid n' if n < 3 ...
随机推荐
- uni-app 使用Vuex+ (强制)登录
一.在项目的根目录下新建一个store文件夹,然后在文件夹下新建一个index.js文件 二.在新建的index.js下引入vue和vuex,具体如下: //引入vue和vuex import Vue ...
- 图解 HTTP 笔记(八)——常见 Web 攻击技术
本章主要讲解 HTTP 通信过程中的一些常见 Web 攻击技术 一.跨站脚本攻击 跨站脚本攻击(Cross-Site Scripting, XSS)是指通过存在安全漏洞的 Web 网站注册用户的浏览器 ...
- 将ByteBuffer保存成文件
String dest = "d:/download/" + name; Path path = Paths.get(dest).getParent().toAbsolutePat ...
- Spring Aop(二)——基于Aspectj注解的Spring Aop简单实现
转发地址:https://www.iteye.com/blog/elim-2394762 2 基于Aspectj注解的Spring Aop简单实现 Spring Aop是基于Aop框架Aspectj实 ...
- 开发工具之GIT
GIT WORKFLOW this readme created on 2019.07.28 by Suarez7988 这是一遍介绍git版本控制流程的中文说明,必须通篇阅读一下 https://g ...
- Ubuntu14.04LTS下 JAVA+HADOOP
首先在虚拟机中安装了Ubuntu14.04LTS 前期工作: 更新源.更新安装vim.安装vmtools工具.安装中文输入法 sudo apt-get update sudo apt-get inst ...
- OpenCV.物体识别
1.度娘:“OpenCV 物体识别” 1.1.opencv实时识别指定物体 - 诺花雨的博客 - CSDN博客.html(https://blog.csdn.net/qq_27063119/artic ...
- WCF服务的Web HTTP方式
NET 3.5以后,WCF中提供了WebGet的方式,允许通过url的形式进行Web 服务的访问.现将WCF服务设置步骤记录如下: endpoint通讯协议设置成 webHttpBinding en ...
- 一次记录 java非web项目部署到linux
1.生成可执行jar 运行提示没有主清单属性 一番查找原因:是因为将项目生成jar包的时候,生成的MANIFEST.MF没有MAIN-CLASS,这里加上就可以了,后面的是项目启动类的完整类名 当然还 ...
- poj1696(极角排序,贪心)
---恢复内容开始--- 题目链接:https://vjudge.net/problem/POJ-1696 题意:有n个点,规定起点,每次只能向左走,不能与之前的路径交叉,求最多能经过几个点. 思路: ...