作业十一——LL(1)文法的判断
1. 文法 G(S):
(1)S -> AB
(2)A ->Da|ε
(3)B -> cC
(4)C -> aADC |ε
(5)D -> b|ε
验证文法 G(S)是不是 LL(1)文法?
答:
证明:FIRST(Da) = {b, a}
FIRST(ε) = {ε}
FIRST(aADC) = {a}
FIRST(b) = {b}
FOLLOW(A) = {c, b, a, #}
FOLLOW(C) = {#,}
FOLLOW(D) = {a, #}
SELECT(A -> Da) = FIRST(Da) = {b, a}
SELECT(A -> ε) = FIRST(ε) - {ε}UFOLLOW(A) = FOLLOW(A) = {c, b, a, #}
因为SELECT(A -> Da) ∩ SELECT(A -> ε) ≠ Ø
所以G(S)不是 LL(1)文法。
2.法消除左递归之后的表达式文法是否是LL(1)文法?
答:文法为:(1)E -> TE'
(2)E' -> +TE' | ε
(3)T -> FT'
(4)T' -> *FT' | ε
(5)F -> (E) | i
FIRST(+TE') = {+}
FIRST(ε) = {ε}
FIRST(*FT') = {*}
FIRST((E)) = { ( }
FIRST(i) = {i}
FOLLOW(E') = { ), # }
FOLLOW(T') = {+, ), #}
FOLLOW(F) = {*, +, ), #}
SELECT(E' -> +TE') = FIRST(+TE') = {+}
SELECT(E' -> ε) = FIRST(ε) - {ε}UFOLLOW(E') = FOLLOW(E') = { ), # }
SELECT(T' -> *FT') = FIRST(*FT') = {*}
SELECT(T' -> ε) = FIRST(ε) - {ε}UFOLLOW(T') = FOLLOW(T') = { +, ), # }
SELECT(F -> (E)) = FIRST((E)) = { ( }
SELECT(F->i)=FIRST(i)={i}
因为SELECT(E' -> +TE') ∩ SELECT(E' -> ε) = Ø
SELECT(T' -> *FT') ∩ SELECT(T' -> ε) = Ø
SELECT(F -> (E)) ∩ SELECT(F -> i) = Ø
所以此表达式文法是LL(1)文法。
3.接2,如果是LL(1)文法,写出它的递归下降语法分析程序代码。
E()
{T();
E'();
}
E'()
T()
T'()
F()
答:SELECT集:
SELECT(E->TE')=FIRST(TE')={ (, i }
SELECT(E'->+TE')=FIRST(+TE')={+}
SELECT(E'->ε)=FIRST(ε)-{ε}UFOLLOW(E')=FOLLOW(E')={ ),# }
SELECT(T->FT')=FIRST(FT')={ (,i }
SELECT(T'->*FT')=FIRST(*FT')={*}
SELECT(T'->ε)=FIRST(ε)-{ε}UFOLLOW(T')=FOLLOW(T')={ +,),# }
SELECT(F->(E))=FIRST((E))={ ( }
SELECT(F->i)=FIRST(i)={i}
递归下降语法分析程序:
void ParseE(){
switch(lookahead){
case '(','i':
ParseT();
ParseE'();
break;
default:
print("syntax error \n");
exit(0);
}
}
void ParseE'(){
switch(lookahead){
case '+':
MatchToken('+');
ParseT();
ParseE'();
break;
case ')','#':
break;
default:
print("syntax error \n");
exit(0);
}
}
void ParseT(){
switch(lookahead){
case '(','i':
ParseF();
ParseT'();
break;
default:
print("syntax error \n");
exit(0);
}
}
void ParseT'(){
switch(lookahead){
case '*':
MatchToken('*');
ParseF();
ParseT'();
break;
case '+',')','#':
break;
default:
print("syntax error \n");
exit(0);
}
}
void ParseF(){
switch(lookahead){
case '(':
MatchToken('(');
ParseE();
MatchToken(')');
break;
case 'i':
MatchToken('i');
break;
default:
print("syntax error \n");
exit(0);
}
}
4.加上实验一的词法分析程序,形成可运行的语法分析程序,分析任意输入的符号串是不是合法的表达式。
作业十一——LL(1)文法的判断的更多相关文章
- 作业十一——LL(1)文法的判断,递归下降分析程序
作业十一——LL(1)文法的判断,递归下降分析程序 判断是否为LL(1)文法 选取有多个产生式的求select,只有一条产生式的无需求select 同一个非终结符之间求交集,全部判断为空后则为LL(1 ...
- 第十一次作业 LL(1)文法的判断,递归下降分析程序
1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...
- 十一次作业——LL(1)文法的判断,递归下降分析程序
1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...
- 第十一次 LL(1)文法的判断,递归下降分析程序
1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...
- LL(1)文法的判断,递归下降分析程序
1. 文法 G(S): (1)S -> AB (2)A ->Da | ε (3)B -> cC (4)C -> aADC | ε (5)D -> b | ε 验证文法 G ...
- 编译原理之LL(1)文法的判断,递归下降分析程序
1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...
- 编译原理:LL(1)文法的判断,递归下降分析程序
1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...
- 【大数据作业十一】分布式并行计算MapReduce
作业要求:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3319 1.用自己的话阐明Hadoop平台上HDFS和MapReduce的功 ...
- 【大数据应用技术】作业十一|分布式并行计算MapReduce
本次作业在要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3319 1.用自己的话阐明Hadoop平台上HDFS和MapRe ...
随机推荐
- juc多线程编程学习
JUC是java.util.concurrent的缩写,java.util.concurrent是在并发编程中使用的工具类. 在以前的解决并发问题,一般是通过Synchronize关键字,现在可以通过 ...
- eNSP——配置基于地址池的DHCP
原理: 实验案例: 拓扑图: 实验编址: 1.基础配置 根据实验编址进行实验的基础配置. 2.基于接口配置DHCP Server功能 在R1上开启dhcp 功能,在接口上开启dhcp服务功能,指定从接 ...
- electron node.js 在 vscode 设置 调试 Debug
在当前工程下,添加一个 .vscode/launch.json 文件 { // Use IntelliSense to learn about possible attributes. // Hove ...
- Information Cartography
作者:Dafna Shahaf 会议:ACM 2015. 研究大背景:自动化地从很大数据集中提取结构化的知识变得越来越难.在本篇文章中,我们将探索我们在文献中(25,26,27)中创立的方法来自 ...
- ${__setProperty(row,rowNum)};不能在import XXX后面使用;
如下 ${__javaScript只能用一次调用 excel.CWResultFile.CWOutputFile.wOutputFile("/Users/iot/1.xls", & ...
- Windows 下redis的安装和使用
1.下载 Window 下载地址:https://github.com/MSOpenTech/redis/releases 查找版本对应的一个MSI或者zip文件下载 2.安装 MSI文件需要安装 z ...
- HTML 前端
昨日内容回顾 HTML文档结构 标签要封闭,全封闭,自封闭 html文件不识别多个空格或者换行,都识别成一个空格 注释: <!-- 注释 --> head标签 网页源信息,配置信息 tit ...
- PAT(B)1015 德才论(C)
题目链接:1015 德才论 (25 point(s)) 分析 由题意可知,需要将考生按照分数进行一个分类(级),然后在每一级中按照分数排序.输入的时候将每个人的总分,等级和录取人数先算出来.然后按照自 ...
- spring cloud微服务实践一
最近在学习spring框架.其中spring cloud在微服务方面很火,所以在学习过程中,也做一些记录. 注:这一个系列的开发环境版本为 java1.8, spring boot2.x, sprin ...
- SAS学习笔记22 t检验、卡方检验