1. 文法 G(S):

(1)S -> AB

(2)A ->Da|ε

(3)B -> cC

(4)C -> aADC |ε

(5)D -> b|ε

验证文法 G(S)是不是 LL(1)文法?

答:

证明:FIRST(Da) = {b, a}

   FIRST(ε) = {ε}

   FIRST(aADC) = {a}

   FIRST(b) = {b}

   FOLLOW(A) = {c, b, a, #}

   FOLLOW(C) = {#,}

   FOLLOW(D) = {a, #}

   SELECT(A -> Da) = FIRST(Da) = {b, a}

   SELECT(A -> ε) = FIRST(ε) - {ε}UFOLLOW(A) = FOLLOW(A) = {c, b, a, #}

   因为SELECT(A -> Da) ∩ SELECT(A -> ε) ≠ Ø

   所以G(S)不是 LL(1)文法。

2.法消除左递归之后的表达式文法是否是LL(1)文法?

答:文法为:(1)E -> TE'

      (2)E' -> +TE' | ε

      (3)T -> FT'

      (4)T' -> *FT' | ε

      (5)F -> (E) | i

  FIRST(+TE') = {+}

  FIRST(ε) = {ε}

  FIRST(*FT') = {*}

  FIRST((E)) = { ( }

  FIRST(i) = {i}

  FOLLOW(E') = { ), # }

  FOLLOW(T') = {+, ), #}

  FOLLOW(F) = {*, +, ), #}

  SELECT(E' -> +TE') = FIRST(+TE') = {+}

  SELECT(E' -> ε) = FIRST(ε) - {ε}UFOLLOW(E') = FOLLOW(E') = { ), # }

  SELECT(T' -> *FT') = FIRST(*FT') = {*}

  SELECT(T' -> ε) = FIRST(ε) - {ε}UFOLLOW(T') = FOLLOW(T') = { +, ), # }

  SELECT(F -> (E)) = FIRST((E)) = { ( }

  SELECT(F->i)=FIRST(i)={i}

  因为SELECT(E' -> +TE') ∩ SELECT(E' -> ε) = Ø

    SELECT(T' -> *FT') ∩ SELECT(T' -> ε) = Ø

    SELECT(F -> (E)) ∩ SELECT(F -> i) = Ø

  所以此表达式文法是LL(1)文法。

3.接2,如果是LL(1)文法,写出它的递归下降语法分析程序代码。

E()

{T();

E'();

}

E'()

T()

T'()

F()

答:SELECT集:

  SELECT(E->TE')=FIRST(TE')={ (, i }

  SELECT(E'->+TE')=FIRST(+TE')={+}

  SELECT(E'->ε)=FIRST(ε)-{ε}UFOLLOW(E')=FOLLOW(E')={ ),# }

  SELECT(T->FT')=FIRST(FT')={ (,i }

  SELECT(T'->*FT')=FIRST(*FT')={*}

  SELECT(T'->ε)=FIRST(ε)-{ε}UFOLLOW(T')=FOLLOW(T')={ +,),# }

  SELECT(F->(E))=FIRST((E))={ ( }

  SELECT(F->i)=FIRST(i)={i}

  递归下降语法分析程序:

  void ParseE(){

    switch(lookahead){

      case '(','i':

        ParseT();

        ParseE'();

        break;

      default:

        print("syntax error \n");

        exit(0);

    }

  }

  void ParseE'(){

    switch(lookahead){

      case '+':

        MatchToken('+');

        ParseT();

        ParseE'();

        break;

      case ')','#':

        break;

      default:

        print("syntax error \n");

        exit(0);

    }

  }

  void ParseT(){ 

    switch(lookahead){

      case '(','i':

        ParseF();

        ParseT'();

        break;

      default:

        print("syntax error \n");

        exit(0);

    }

  }

  void ParseT'(){

    switch(lookahead){

      case '*':

        MatchToken('*');

        ParseF();

        ParseT'();

        break;

      case '+',')','#':

        break;

      default:

        print("syntax error \n");

        exit(0);

    }

  }

  void ParseF(){

    switch(lookahead){

      case '(':

        MatchToken('(');

        ParseE();

        MatchToken(')');

        break;

      case 'i':

        MatchToken('i');

        break;

      default:

        print("syntax error \n");

        exit(0);

    }

  }

4.加上实验一的词法分析程序,形成可运行的语法分析程序,分析任意输入的符号串是不是合法的表达式。

作业十一——LL(1)文法的判断的更多相关文章

  1. 作业十一——LL(1)文法的判断,递归下降分析程序

    作业十一——LL(1)文法的判断,递归下降分析程序 判断是否为LL(1)文法 选取有多个产生式的求select,只有一条产生式的无需求select 同一个非终结符之间求交集,全部判断为空后则为LL(1 ...

  2. 第十一次作业 LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  3. 十一次作业——LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  4. 第十一次 LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  5. LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da | ε (3)B -> cC (4)C -> aADC | ε (5)D -> b | ε 验证文法 G ...

  6. 编译原理之LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  7. 编译原理:LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  8. 【大数据作业十一】分布式并行计算MapReduce

    作业要求:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3319 1.用自己的话阐明Hadoop平台上HDFS和MapReduce的功 ...

  9. 【大数据应用技术】作业十一|分布式并行计算MapReduce

    本次作业在要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3319  1.用自己的话阐明Hadoop平台上HDFS和MapRe ...

随机推荐

  1. juc多线程编程学习

    JUC是java.util.concurrent的缩写,java.util.concurrent是在并发编程中使用的工具类. 在以前的解决并发问题,一般是通过Synchronize关键字,现在可以通过 ...

  2. eNSP——配置基于地址池的DHCP

    原理: 实验案例: 拓扑图: 实验编址: 1.基础配置 根据实验编址进行实验的基础配置. 2.基于接口配置DHCP Server功能 在R1上开启dhcp 功能,在接口上开启dhcp服务功能,指定从接 ...

  3. electron node.js 在 vscode 设置 调试 Debug

    在当前工程下,添加一个 .vscode/launch.json 文件 { // Use IntelliSense to learn about possible attributes. // Hove ...

  4. Information Cartography

    作者:Dafna Shahaf 会议:ACM 2015.    研究大背景:自动化地从很大数据集中提取结构化的知识变得越来越难.在本篇文章中,我们将探索我们在文献中(25,26,27)中创立的方法来自 ...

  5. ${__setProperty(row,rowNum)};不能在import XXX后面使用;

    如下 ${__javaScript只能用一次调用 excel.CWResultFile.CWOutputFile.wOutputFile("/Users/iot/1.xls", & ...

  6. Windows 下redis的安装和使用

    1.下载 Window 下载地址:https://github.com/MSOpenTech/redis/releases 查找版本对应的一个MSI或者zip文件下载 2.安装 MSI文件需要安装 z ...

  7. HTML 前端

    昨日内容回顾 HTML文档结构 标签要封闭,全封闭,自封闭 html文件不识别多个空格或者换行,都识别成一个空格 注释: <!-- 注释 --> head标签 网页源信息,配置信息 tit ...

  8. PAT(B)1015 德才论(C)

    题目链接:1015 德才论 (25 point(s)) 分析 由题意可知,需要将考生按照分数进行一个分类(级),然后在每一级中按照分数排序.输入的时候将每个人的总分,等级和录取人数先算出来.然后按照自 ...

  9. spring cloud微服务实践一

    最近在学习spring框架.其中spring cloud在微服务方面很火,所以在学习过程中,也做一些记录. 注:这一个系列的开发环境版本为 java1.8, spring boot2.x, sprin ...

  10. SAS学习笔记22 t检验、卡方检验