1. 文法 G(S):

(1)S -> AB

(2)A ->Da|ε

(3)B -> cC

(4)C -> aADC |ε

(5)D -> b|ε

验证文法 G(S)是不是 LL(1)文法?

答:

证明:FIRST(Da) = {b, a}

   FIRST(ε) = {ε}

   FIRST(aADC) = {a}

   FIRST(b) = {b}

   FOLLOW(A) = {c, b, a, #}

   FOLLOW(C) = {#,}

   FOLLOW(D) = {a, #}

   SELECT(A -> Da) = FIRST(Da) = {b, a}

   SELECT(A -> ε) = FIRST(ε) - {ε}UFOLLOW(A) = FOLLOW(A) = {c, b, a, #}

   因为SELECT(A -> Da) ∩ SELECT(A -> ε) ≠ Ø

   所以G(S)不是 LL(1)文法。

2.法消除左递归之后的表达式文法是否是LL(1)文法?

答:文法为:(1)E -> TE'

      (2)E' -> +TE' | ε

      (3)T -> FT'

      (4)T' -> *FT' | ε

      (5)F -> (E) | i

  FIRST(+TE') = {+}

  FIRST(ε) = {ε}

  FIRST(*FT') = {*}

  FIRST((E)) = { ( }

  FIRST(i) = {i}

  FOLLOW(E') = { ), # }

  FOLLOW(T') = {+, ), #}

  FOLLOW(F) = {*, +, ), #}

  SELECT(E' -> +TE') = FIRST(+TE') = {+}

  SELECT(E' -> ε) = FIRST(ε) - {ε}UFOLLOW(E') = FOLLOW(E') = { ), # }

  SELECT(T' -> *FT') = FIRST(*FT') = {*}

  SELECT(T' -> ε) = FIRST(ε) - {ε}UFOLLOW(T') = FOLLOW(T') = { +, ), # }

  SELECT(F -> (E)) = FIRST((E)) = { ( }

  SELECT(F->i)=FIRST(i)={i}

  因为SELECT(E' -> +TE') ∩ SELECT(E' -> ε) = Ø

    SELECT(T' -> *FT') ∩ SELECT(T' -> ε) = Ø

    SELECT(F -> (E)) ∩ SELECT(F -> i) = Ø

  所以此表达式文法是LL(1)文法。

3.接2,如果是LL(1)文法,写出它的递归下降语法分析程序代码。

E()

{T();

E'();

}

E'()

T()

T'()

F()

答:SELECT集:

  SELECT(E->TE')=FIRST(TE')={ (, i }

  SELECT(E'->+TE')=FIRST(+TE')={+}

  SELECT(E'->ε)=FIRST(ε)-{ε}UFOLLOW(E')=FOLLOW(E')={ ),# }

  SELECT(T->FT')=FIRST(FT')={ (,i }

  SELECT(T'->*FT')=FIRST(*FT')={*}

  SELECT(T'->ε)=FIRST(ε)-{ε}UFOLLOW(T')=FOLLOW(T')={ +,),# }

  SELECT(F->(E))=FIRST((E))={ ( }

  SELECT(F->i)=FIRST(i)={i}

  递归下降语法分析程序:

  void ParseE(){

    switch(lookahead){

      case '(','i':

        ParseT();

        ParseE'();

        break;

      default:

        print("syntax error \n");

        exit(0);

    }

  }

  void ParseE'(){

    switch(lookahead){

      case '+':

        MatchToken('+');

        ParseT();

        ParseE'();

        break;

      case ')','#':

        break;

      default:

        print("syntax error \n");

        exit(0);

    }

  }

  void ParseT(){ 

    switch(lookahead){

      case '(','i':

        ParseF();

        ParseT'();

        break;

      default:

        print("syntax error \n");

        exit(0);

    }

  }

  void ParseT'(){

    switch(lookahead){

      case '*':

        MatchToken('*');

        ParseF();

        ParseT'();

        break;

      case '+',')','#':

        break;

      default:

        print("syntax error \n");

        exit(0);

    }

  }

  void ParseF(){

    switch(lookahead){

      case '(':

        MatchToken('(');

        ParseE();

        MatchToken(')');

        break;

      case 'i':

        MatchToken('i');

        break;

      default:

        print("syntax error \n");

        exit(0);

    }

  }

4.加上实验一的词法分析程序,形成可运行的语法分析程序,分析任意输入的符号串是不是合法的表达式。

作业十一——LL(1)文法的判断的更多相关文章

  1. 作业十一——LL(1)文法的判断,递归下降分析程序

    作业十一——LL(1)文法的判断,递归下降分析程序 判断是否为LL(1)文法 选取有多个产生式的求select,只有一条产生式的无需求select 同一个非终结符之间求交集,全部判断为空后则为LL(1 ...

  2. 第十一次作业 LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  3. 十一次作业——LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  4. 第十一次 LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  5. LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da | ε (3)B -> cC (4)C -> aADC | ε (5)D -> b | ε 验证文法 G ...

  6. 编译原理之LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  7. 编译原理:LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  8. 【大数据作业十一】分布式并行计算MapReduce

    作业要求:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3319 1.用自己的话阐明Hadoop平台上HDFS和MapReduce的功 ...

  9. 【大数据应用技术】作业十一|分布式并行计算MapReduce

    本次作业在要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3319  1.用自己的话阐明Hadoop平台上HDFS和MapRe ...

随机推荐

  1. Jupter Notebook常用快捷键与常用的魔法命令

    jupter notebook快捷键整理 Part1 1.删除Cell——双击D 2.撤销删除——Z 3.新建Cell——A/B (向上/向下) 4.命令窗口——P 5.运行——Ctrl+Enter ...

  2. vue {{}}的用法

    参考链接:https://blog.csdn.net/cofecode/article/details/78666233

  3. CentOS系统安装配置mysql

    一.mysql安装 安装mysql数据库: yum install -y mysql mysql-server 判断mysql是否启动成功: service mysqld start 二.mysql配 ...

  4. cent8安装postgres

    postgres是一款免费.开源的对象型关系数据库,其在cent8的安装方式与cent7的不太一样,特此记录. 步骤: 1 安装postgres server dnf install postgres ...

  5. C/C++内存知识(一)

    一.C/C++编译的程序占用的内存分为以下几个部分 1.栈区(stack)- 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等.其操作方式类似于数据结构中的栈. 2.堆区(heap)- 由程序 ...

  6. unicode 格式 转汉字

    function decodeUnicode($str){ return preg_replace_callback('/\\\\u([0-9a-f]{4})/i', create_function( ...

  7. python--接口自动化测试(接口状态)

    本节开始,开始介绍python的接口自动化测试,首先需要搭建python开发环境,到https://www.python.org/下载python 版本直接安装就以了,建议 下载python2.7.1 ...

  8. 从业务流程角度:分析TMS系统各个功能模块

    TMS的主要功能是协调承运商.运营商.货主三种角色人员分工合作共同完成运输任务,并实现对运输任务的跟踪管理.本文将按照业务流程顺序对TMS系统各个功能模块进行分析说明. 一.业务描述 新零售的兴起及& ...

  9. 体验三大JavaScript文件上传库(Uppy.js/Filepond/Dropzone)

    最近发现了一个高颜值的前端上传组件Uppy.js,立即上手体验了一波,感觉还不错.然后又看到同类型的Filepond以及Dropzone.js,对比体验了一下,感觉都很优秀,但是在体验过程中,都遇到了 ...

  10. MongoDB知识小结

    一.术语 RDBMS MongoDB 数据库 数据库 表格 集合 行 文档 列 字段 表联合 嵌套文档 主键 主键 (MongoDB 提供了 key 为 _id ) 数据库 数据库名可以是满足以下条件 ...