Luogu P5354 [Ynoi2017]由乃的OJ
Link
这题以前叫睡觉困难综合征。
首先我们需要知道起床困难综合征怎么做。
大概就是先用一个全\(0\)和全\(1\)的变量跑一遍处理出每一位\(1\)和\(0\)最后会变成什么。
然后高位贪心:如果当前位能够从\(0\)到\(1\),那么直接选上。如果能够从\(1\)到\(0\),那么能选就选。
现在我们把它放到了树上。
那么使用LCT或者树剖就可以解决了。
#include<bits/stdc++.h>
#define N 100007
#define ull unsigned long long
using namespace std;
namespace IO
{
char ibuf[(1<<21)+1],obuf[(1<<21)+1],st[22],*iS,*iT,*oS=obuf,*oT=obuf+(1<<21);
char Get() { return (iS==iT? (iT=(iS=ibuf)+fread(ibuf,1,(1<<21)+1,stdin),(iS==iT? EOF:*iS++)):*iS++); }
void Flush() { fwrite(obuf,1,oS-obuf,stdout),oS=obuf; }
void Put(char x) { *oS++=x; if(oS==oT) Flush(); }
ull read(){ull x=0;char ch=Get();while(ch>'9'||ch<'0')ch=Get();while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=Get();return x;}
void write(ull x){int top=0;if(!x)return (void)Put('0'),Put('\n');while(x)st[++top]=(x%10)+48,x/=10;while(top)Put(st[top--]);Put('\n');}
}
using namespace IO;
struct node{ull f0,f1;}val[N],lr[N],rl[N];
node merge(node x,node y){return (node){(~x.f0&y.f0)|(x.f0&y.f1),(~x.f1&y.f0)|(x.f1&y.f1)};}
int fa[N],ch[N][2],r[N];
#define lc ch[p][0]
#define rc ch[p][1]
int nroot(int p){return ch[fa[p]][0]==p||ch[fa[p]][1]==p;}
void pushup(int p)
{
lr[p]=rl[p]=val[p];
if(lc) lr[p]=merge(lr[lc],lr[p]),rl[p]=merge(rl[p],rl[lc]);
if(rc) lr[p]=merge(lr[p],lr[rc]),rl[p]=merge(rl[rc],rl[p]);
}
void pushrev(int p){swap(lr[p],rl[p]),swap(lc,rc),r[p]^=1;}
void pushdown(int p){if(r[p])pushrev(lc),pushrev(rc),r[p]=0;}
void pushall(int p){if(nroot(p))pushall(fa[p]);pushdown(p);}
void rotate(int p)
{
int x=fa[p],y=fa[x],k=ch[x][1]==p,w=ch[p][!k];
if(nroot(x)) ch[y][ch[y][1]==x]=p;
ch[p][!k]=x,ch[x][k]=w,fa[w]=x,fa[x]=p,fa[p]=y,pushup(x);
}
void splay(int p)
{
pushall(p);
for(int x;nroot(p);rotate(p))if(nroot(x=fa[p])) rotate((ch[x][0]==p)^(ch[fa[x]][0]==x)? p:x);
pushup(p);
}
void access(int p){for(int x=0;p;p=fa[x=p])splay(p),rc=x,pushup(p);}
void makeroot(int p){access(p),splay(p),pushrev(p);}
void split(int u,int v){makeroot(u),access(v),splay(v);}
void link(int u,int v){makeroot(u),fa[u]=v;}
ull query(ull w,int v,int u)
{
ull ans=0,tmp=1;split(u,v);
for(int k=63;~k;--k)
if(lr[v].f0&(tmp<<k)) ans+=(tmp<<k);
else if(lr[v].f1&(tmp<<k)&&w>=(tmp<<k)) w-=(tmp<<k),ans+=(tmp<<k);
return ans;
}
int main()
{
int n=read(),m=read(),i,u,v;read();
ull e=0,x;
for(i=1;i<=n;++i)
switch(read())
{
case 1:val[i]=(node){e,read()};break;
case 2:val[i]=(node){read(),~e};break;
case 3:x=read(),val[i]=(node){x,~x};break;
}
for(i=1;i<n;++i) u=read(),v=read(),link(u,v);
while(m--)
{
if(read()==1) write(query(read(),read(),read()));
else
{
u=read();
switch(read())
{
case 1:val[u]=(node){e,read()};break;
case 2:val[u]=(node){read(),~e};break;
case 3:x=read(),val[u]=(node){x,~x};break;
}
splay(u);
}
}
return Flush(),0;
}
Luogu P5354 [Ynoi2017]由乃的OJ的更多相关文章
- luogu 5354 [Ynoi2017]由乃的OJ LCT+位运算
如果做过起床困难综合征的话应该很快就能有思路,没做过那道题的话还真是挺费劲的. 我们不知道要带入的值是什么,但是我们可以知道假设带入值得当前位为 $1$ 时这一位在经过位运算后是否为 $1$. 至于这 ...
- 【BZOJ4811】[Ynoi2017]由乃的OJ 树链剖分+线段树
[BZOJ4811][Ynoi2017]由乃的OJ Description 由乃正在做她的OJ.现在她在处理OJ上的用户排名问题.OJ上注册了n个用户,编号为1-",一开始他们按照编号排名. ...
- 【bzoj4811】[Ynoi2017]由乃的OJ 树链剖分/LCT+贪心
Description 给你一个有n个点的树,每个点的包括一个位运算opt和一个权值x,位运算有&,l,^三种,分别用1,2,3表示. 每次询问包含三个数x,y,z,初始选定一个数v.然后v依 ...
- [Ynoi2017]由乃的OJ
题意 由乃正在做她的OJ.现在她在处理OJ上的用户排名问题.OJ上注册了n个用户,编号为1-",一开始他们按照编号 排名.由乃会按照心情对这些用户做以下四种操作,修改用户的排名和编号:然而由 ...
- luogu P3285 [SCOI2014]方伯伯的OJ splay 线段树
LINK:方伯伯的OJ 一道稍有质量的线段树题目.不写LCT splay这辈子是不会单独写的 真的! 喜闻乐见的是 题目迷惑选手 \(op==1\) 查改用户在序列中的位置 题目压根没说位置啊 只有排 ...
- 【bzoj4811】[Ynoi2017]由乃的OJ 树链剖分+线段树区间合并
题解: 好像和noi那题并没有什么区别 只是加上了修改和变成树上 比较显然我们可以用树链剖分来维护
- BZOJ4811 [Ynoi2017]由乃的OJ 树链剖分
原文链接http://www.cnblogs.com/zhouzhendong/p/8085286.html 题目传送门 - BZOJ4811 题意概括 是BZOJ3668长在树上并加上修改和区间询问 ...
- Luogu3613 睡觉困难综合征/BZOJ4811 Ynoi2017 由乃的OJ 树链剖分、贪心
传送门 题意:给出一个$N$个点的树,树上每个点有一个位运算符号和一个数值.需要支持以下操作:修改一个点的位运算符号和数值,或者给出两个点$x,y$并给出一个上界$a$,可以选取一个$[0,a]$内的 ...
- bzoj 4811: [Ynoi2017]由乃的OJ
树链剖分,用zkw线段树维护每条链两个方向上对每一位的变换情况,由于位数较少,可以用两个unsigned long long表示 #include<cstdio> typedef unsi ...
随机推荐
- 【CUDA 基础】3.5 展开循环
title: [CUDA 基础]3.5 展开循环 categories: - CUDA - Freshman tags: - 展开归约 - 归约 - 模板函数 toc: true date: 2018 ...
- 【CUDA 基础】2.3 组织并行线程
title: [CUDA 基础]2.3 组织并行线程 categories: CUDA Freshman tags: Thread Block Grid toc: true date: 2018-03 ...
- Python基础之注释
有时候我们写的东西不一定都是给用户看的,或者不希望解释器执行,那么我们可以选择注释掉代码. 被注释的内容是不会执行的,可以方便在以后能读懂代码. 注释分为两种,一种是单行注释,一种是多行注释. 单行注 ...
- Python基础之Python语言类型
编程语言主要从以下几个角度进行分类: 编译型和解释型 静态语言和动态语言 强类型定义语言和弱类型定义语言 编译和解释的区别是什么? 编译器把源程序的每一条语句都编译成机器语言,并保存成二进制文件,这样 ...
- Tiling_easy version
Tiling_easy version 思路:关于dp这种东西,有一点必须要想明白,就是状态与状态之间的转换关系,就比如说要求5个骨牌的方案数,因为有两种骨牌,那么可以用dp[3]+两个横着的骨牌或者 ...
- Remainder Problem
F. Remainder Problem 这个其实并不难,只是看看考察有没有分块的思路 思路:用一个ans[i][j]来记录所有k=(1~5e5)中所有a[k]%i==j的和,在查询的时候可以达到复杂 ...
- [笔记]动态规划(dynamic programming)
动态规划与分治方法都是通过组合子问题的解来求解原问题,区别在于:分治方法将问题划分为互不相交的子问题,递归求解子问题,再将它们的解组合起来,求出原问题的解.分治算法可能反复的求解某些公共子问题,从而使 ...
- Http请求优化
Http请求优化 我们在做项目开发或多或少的都会使用SpringCloud,其中做远程调度的时候会将HTTP请求Http请求优化. HTTP请求Client存在很多种. JDK原生的URLConnec ...
- Scope 'request' is not active for the current thread
Unable to instantiate Action, getUserAction, defined for 'getUser' in namespace '/'Error creating be ...
- JSP学习案例--,竞猜游戏
<%@ page language="java" import="java.util.*" pageEncoding="utf-8"% ...