[Scikit-learn] 1.1 Generalized Linear Models - Bayesian Ridge Regression
1.1.10. Bayesian Ridge Regression
首先了解一些背景知识:from: https://www.r-bloggers.com/the-bayesian-approach-to-ridge-regression/
In this post, we are going to be taking a computational approach to demonstrating the equivalence of the bayesian approach and ridge regression.
From: 文本语言模型的参数估计-最大似然估计、MAP及贝叶斯估计
三类参数估计方法:最大似然估计MLE、最大后验概率估计MAP、贝叶斯估计。
最大似然估计MLE
关键:写出似然函数
最大后验概率估计MAP
最大后验估计与最大似然估计相似,不同点在于估计的函数中允许加入一个先验
,也就是说此时不是要求似然函数最大,而是要求由贝叶斯公式计算出的整个后验概率最大,即
注意这里P(X)与参数无关,因此等价于要使分子最大。与最大似然估计相比,现在需要多加上一个先验分布概率的对数。
【在样本足够大时,结果逼近MLE】
【加了先验没什么神秘的,效果很类似l正则项】
贝叶斯估计
贝叶斯估计是在MAP上做进一步拓展,此时不直接估计参数的值,而是允许参数服从一定概率分布。回顾一下贝叶斯公式
现在不是要求后验概率最大,这样就需要求,即观察到的evidence的概率,由全概率公式展开可得
当新的数据被观察到时,后验概率可以自动随之调整。但是通常这个全概率的求法是贝叶斯估计比较有技巧性的地方。
那么如何用贝叶斯估计来做预测呢?如果我们想求一个新值的概率,可以由
来计算。注意此时第二项因子在上的积分不再等于1,这就是和MLE及MAP很大的不同点。
我们仍然以扔硬币的伯努利实验为例来说明。和MAP中一样,我们假设先验分布为Beta分布,
但是构造贝叶斯估计时,
- 不是要求用后验最大时的参数来近似作为参数值,
- 而是求满足Beta分布的参数p的期望,有
注意这里用到了公式
当T为二维的情形可以对Beta分布来应用;T为多维的情形可以对狄利克雷分布应用
根据结果可以知道,根据贝叶斯估计,参数p服从一个新的Beta分布。回忆一下,我们为p选取的先验分布是Beta分布,然后以p为参数的二项分布用贝叶斯估计得到的后验概率仍然服从Beta分布,由此我们说二项分布和Beta分布是共轭分布。在概率语言模型中,通常选取共轭分布作为先验,可以带来计算上的方便性。最典型的就是LDA中每个文档中词的Topic分布服从Multinomial分布,其先验选取共轭分布即Dirichlet分布;每个Topic下词的分布服从Multinomial分布,其先验也同样选取共轭分布即Dirichlet分布。
根据Beta分布的期望和方差计算公式,我们有
可以看出此时估计的p的期望和MLE ,MAP中得到的估计值都不同,此时如果仍然是做20次实验,12次正面,8次反面,那么我们根据贝叶斯估计得到的p满足参数为12+5和8+5的Beta分布,其均值和方差分别是17/30=0.567, 17*13/(31*30^2)=0.0079。可以看到此时求出的p的期望比MLE和MAP得到的估计值都小,更加接近0.5。
结论:
综上所述我们可以可视化MLE,MAP和贝叶斯估计对参数的估计结果如下
个人理解是,从MLE到MAP再到贝叶斯估计,对参数的表示越来越精确【应该是表达越来越丰富,毕竟由一个值变为了一个分布,减少了推断过程中信息的损失】,得到的参数估计结果也越来越接近0.5这个先验概率,越来越能够反映基于样本的真实参数情况。【一般都用贝叶斯估计】
链接:https://www.zhihu.com/question/22007264/answer/20014371
过去的线性归回,比如使用最小二乘,其实就是相当于最大似然的感觉,容易overfitting。
采用了贝叶斯,假设了高斯分布,也就等价于Ridge Regression。
如果假设是拉普拉斯分布,就等价于LASSO。
Train:
>>> from sklearn import linear_model
>>> X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]]
>>> Y = [0., 1., 2., 3.]
>>> reg = linear_model.BayesianRidge()
>>> reg.fit(X, Y)
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
normalize=False, tol=0.001, verbose=False)
Predict:
>>> reg.predict ([[1, 0.]])
array([ 0.50000013])
Demo:

[Scikit-learn] 1.1 Generalized Linear Models - Bayesian Ridge Regression的更多相关文章
- [Scikit-learn] 1.5 Generalized Linear Models - SGD for Regression
梯度下降 一.亲手实现“梯度下降” 以下内容其实就是<手动实现简单的梯度下降>. 神经网络的实践笔记,主要包括: Logistic分类函数 反向传播相关内容 Link: http://pe ...
- Regression:Generalized Linear Models
作者:桂. 时间:2017-05-22 15:28:43 链接:http://www.cnblogs.com/xingshansi/p/6890048.html 前言 本文主要是线性回归模型,包括: ...
- Generalized Linear Models
作者:桂. 时间:2017-05-22 15:28:43 链接:http://www.cnblogs.com/xingshansi/p/6890048.html 前言 主要记录python工具包:s ...
- 广义线性模型(Generalized Linear Models)
前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The E ...
- Andrew Ng机器学习公开课笔记 -- Generalized Linear Models
网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回 ...
- [Scikit-learn] 1.1 Generalized Linear Models - from Linear Regression to L1&L2
Introduction 一.Scikit-learning 广义线性模型 From: http://sklearn.lzjqsdd.com/modules/linear_model.html#ord ...
- [Scikit-learn] 1.5 Generalized Linear Models - SGD for Classification
NB: 因为softmax,NN看上去是分类,其实是拟合(回归),拟合最大似然. 多分类参见:[Scikit-learn] 1.1 Generalized Linear Models - Logist ...
- [Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax
二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻 ...
- Popular generalized linear models|GLMM| Zero-truncated Models|Zero-Inflated Models|matched case–control studies|多重logistics回归|ordered logistics regression
============================================================== Popular generalized linear models 将不同 ...
随机推荐
- linux 终端命令学习
Linux 的版本不同,其终端下命令也有所差异的. cal -y / -d /-m 查看日历的 free -m /df -m 查剩余空间的 passwd -l / -u 用户名 -锁定,解锁 ...
- java之rpc/orm
Netty线程模型 其中ChannelPiepline的设计模型采用的是Handler组成的责任链模型 blocking I/O 阻塞nonblocking I/O 非阻塞I/O multiplexi ...
- C语言I 博客作业03
这个作业属于哪个课程 C语言程序设计II 这个作业要求在哪里 作业要求 我在这个课程的目标是 掌握关系运算.if-else语句.格式化输入语句scanf(),以及常用的数学库函数 这个作业在那个具体方 ...
- jaxb生成pojo类返回类型为布尔值的问题
返回值为Boolean的话回在对象转json的时候丢失掉这个属性,因为json认的是小写. 这个算jaxb的一个bug:https://java.net/jira/browse/JAXB-510 解决 ...
- webdriver对各种浏览器的支持
1.Firefox WebDriver实现了FireFoxDriver,无需用户下载FireFoxDriver. 优点:FireFoxDriver对页面的自动化测试支持得比较好,很直观地模拟页面的操作 ...
- 一个奇怪的方法解决华为ENSP模拟器路由器启动后命令行一直“#”的问题
今天打开ensp准备练习一下,设备启动以后发现端口一直是红色.于是打开路由器命令行,发现一直输出“#”号.百度后几乎试了所有方法,什么删除网卡再新建.重启计时器.配置ip地址..都不行. 可是我昨天用 ...
- java上传文件夹
我们平时经常做的是上传文件,上传文件夹与上传文件类似,但也有一些不同之处,这次做了上传文件夹就记录下以备后用.此控件PC全平台支持包括mac,linux系统的文件上传,文章末尾将附上控件下载与教程链接 ...
- centos7 配置静态ip时出现双ip问题解决
1.先用ifconfig,看看有几个网卡 2.执行vi /etc/sysconfig/network-scripts/ifcfg-eth0最后的网卡名字改为实际的 3.静态ip只需要设置着几个地方,B ...
- [2]windows内核情景分析--系统调用
Windows的地址空间分用户模式与内核模式,低2GB的部分叫用户模式,高2G的部分叫内核模式,位于用户空间的代码不能访问内核空间,位于内核空间的代码却可以访问用户空间 一个线程的运行状态分内核态与用 ...
- 面向对象(OOP)笔记
1.本质:以类的方式组织代码,以对象的方式组织(封装)数据 2.对象:是具体的事物 3.类:是对对象的抽象(抽象 抽出象的部分) 先有具体的对象,然后抽象各个对象之间象的部分,归纳出类 通过类再认识其 ...