Gym - 102346G Getting Confidence 最小费用最大流
Gym - 102346GGetting Confidence
题意:n*n的格子,每个格子上有一个数,要求每行每列都只能拿一个数,使得乘积最大,然后输出每列选择的是第几行的数。
如果是加法的话,那么很明显,就是一个网络流。可是,现在是乘法怎么办,很简单,直接取log,那么乘法便转换成了加法,然后就可以建图。
每行每列只能取一个数,就相当于行列是拆开的点,因为需要输出的是列的信息,那么源点向每一列建一条流量为1,费用为0的边,而每一行向汇点建一条流量为1,费用为0的边。
再对于每个格子,每一列向它这一列的格子建一条流量为1,费用为0的点,而每个格子向它所在的行建一条流量为1,费用为-log(格子上的数)的边。
最后跑一遍最小费用最大流,看一下每一列的那条边流量为0
#include<cstdio>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std;
const int N=2e4+,M=1e6+,inf=1e9+;
struct Side{
int v,ne,w;
double val;
}S[M<<];
double dis[N];
int n,sn,sb,se,head[N],vis[N],flow[N],lu[N];
void init(){
sn=;
sb=;se=n*n+*n+;
for(int i=sb;i<=se;i++) head[i]=-;
}
void add(int u,int v,int w,double val){
S[sn].w=w;S[sn].val=val;
S[sn].v=v;S[sn].ne=head[u];
head[u]=sn++;
}
void addE(int u,int v,int w,double val){
add(u,v,w,val);add(v,u,,-val);
}
bool spfa(){
queue<int> q;
for(int i=sb;i<=se;i++){
dis[i]=inf;
vis[i]=;
flow[i]=inf;
lu[i]=-;
}
dis[sb]=;
vis[sb]=;
q.push(sb);
int u,v;
while(!q.empty()){
u=q.front();q.pop();vis[u]=;
for(int i=head[u];~i;i=S[i].ne){
v=S[i].v;
if(S[i].w>&&dis[v]>dis[u]+S[i].val){
lu[v]=i;
dis[v]=dis[u]+S[i].val;
flow[v]=min(flow[u],S[i].w);
if(!vis[v]){
vis[v]=;
q.push(v);
}
}
}
}
return dis[se]!=inf;
}
void mfml(){
int ans=,ansc=;
while(spfa()){
ans+=flow[se];
ansc+=flow[se]*dis[se];
for(int i=lu[se];~i;i=lu[S[i^].v]){
S[i].w-=flow[se];
S[i^].w+=flow[se];
}
}
}
int main(){
while(~scanf("%d",&n)){
init();;
for(int i=;i<=n;i++){
addE(sb,n*n+n+i,,0.0);
addE(n*n+i,se,,0.0);
}
for(int i=,x;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&x);
addE(n*n+n+j,(i-)*n+j,,0.0);
addE((i-)*n+j,n*n+i,,-log(1.0*x));
}
}
mfml();
for(int i=;i<=n;i++)
for(int j=head[n*n+n+i];~j;j=S[j].ne){
if(S[j].w||S[j].v==sb) continue;
printf("%d%c",(S[j].v-)/n+," \n"[i==n]);
break;
}
}
return ;
}
log转乘为加
Gym - 102346G Getting Confidence 最小费用最大流的更多相关文章
- [板子]最小费用最大流(Dijkstra增广)
最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...
- bzoj1927最小费用最大流
其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→ =_=你TM逗我 刚要删突然感觉dinic的模 ...
- ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)
将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...
- HDU5900 QSC and Master(区间DP + 最小费用最大流)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...
- P3381 【模板】最小费用最大流
P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...
- 【BZOJ-3876】支线剧情 有上下界的网络流(有下界有源有汇最小费用最大流)
3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 821 Solved: 502[Submit][Status ...
- hdu 4411 2012杭州赛区网络赛 最小费用最大流 ***
题意: 有 n+1 个城市编号 0..n,有 m 条无向边,在 0 城市有个警察总部,最多可以派出 k 个逮捕队伍,在1..n 每个城市有一个犯罪团伙, 每个逮捕队伍在每个城市可以选 ...
- UVa11082 Matrix Decompressing(最小费用最大流)
题目大概有一个n*m的矩阵,已知各行所有数的和的前缀和和各列所有数的和的前缀和,且矩阵各个数都在1到20的范围内,求该矩阵的一个可能的情况. POJ2396的弱化版本吧..建图的关键在于: 把行.列看 ...
- UVa12092 Paint the Roads(最小费用最大流)
题目大概说一个n个点m条带权有向边的图,要给边染色,染色的边形成若干个回路且每个点都恰好属于其中k个回路.问最少要染多少边权和的路. 一个回路里面各个点的入度=出度=1,那么可以猜想知道各个点如果都恰 ...
随机推荐
- 【并发】8、借助redis 实现多线程生产消费阻塞队列
顾名思义这个就是再消费的时候,不是之前的那哥用yield进行线程切换的操作,而是用线程等待阻塞的方式去执行,说实话我感觉效率不一定有之前那个好, 因为我对这种阻塞队列使用的时候,之前有发现阻塞队列,塞 ...
- 多线程面试题之【三线程按顺序交替打印ABC的方法】
建立三个线程,线程名字分别为:A.B.C,要求三个线程分别打印自己的线程名字,但是要求三个线程同时运行,并且实现交替打印,即按照ABCABCABC的顺序打印.打印10轮,打印完毕控制台输出字符串:&q ...
- Codeforces Round #222 (Div. 1) (ABCDE)
377A Maze 大意: 给定棋盘, 保证初始所有白格连通, 求将$k$个白格变为黑格, 使得白格仍然连通. $dfs$回溯时删除即可. #include <iostream> #inc ...
- Tomcat一闪而过的调试方法
很少用tomcat来部署,都是用springboot微服务.只是以前学的时候搞demo试过而已. 软件测试的期末作业要求要测一个Javaweb的项目,给了一个包然后要求部署在tomcat中并启动. 然 ...
- 【转载】 Sqlserver使用Left函数从最左边开始截取固定长度字符串
在Sqlserver数据库的字符串操作中,截取字符串是最常见的操作,sql server提供了3个常用截取字符串方法,LEFT().RIGHT().SUBSTRING(),如果从第一个字符即最左边位置 ...
- Fortify漏洞之Access Control: Database(数据越权)
继续对Fortify的漏洞进行总结,本篇主要针对 Access Control: Database(数据越权)的漏洞进行总结,如下: 1.Access Control: Database(数据越权) ...
- 第十七篇:WEB服务器之HTTP协议
本篇主要为为了实现WEB服务器,其中包含了HTTP协议的理解,以及TCP的三次握手.四次挥手等方面相关知识,同时还包含了关于web浏览器与服务器之间的通信过程. 一.web浏览器 通常在我们上网时会在 ...
- 五、MySQL系列之高级知识(五)
本篇 主要介绍MySQL的高级知识---视图.事件.索引等相关知识: 一.视图 在学习视图时我们需要什么是视图,视图有哪些好处以及视图的相关操作: 1.1 什么是视图? 关于视图通俗来讲就是一条se ...
- 运维开发笔记整理-使用Django编写helloworld
运维开发笔记整理-使用Django编写helloworld 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.创建Django项目 1>.创建Django项目 djang ...
- 2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划
2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划 [Problem Description] 有向无环图中,有个机器人从\(1\)号节点出发,每天等概率的走到下 ...