Can you answer these queries V SPOJ - GSS5 (分类讨论+线段树维护区间最大子段和)
recursion有一个整数序列a[n]。现在recursion有m次询问,每次她想知道Max { A[i]+A[i+1]+...+A[j] ; x1 <= i <= y1 , x2 <= j <= y2 , x1 <= x2 , y1 <= y2 }。这么简单的题,recursion当然会做啦,但是为了维持她的傲娇属性,她决定考考你。
Input
输入的第一行为数据组数。对于每组数据,第一行包含一个正整数n和长度为n的序列a[n]。接下来一行有一个正整数m。下面m行分别描述m个询问,每行包含四个整数x1,y1,x2,y2。
Output
对于每组数据输出m行,分别表示m个询问的答案
Sample Input
2
6 3 -2 1 -4 5 2
2
1 1 2 3
1 3 2 5
1 1
1
1 1 1 1
Sample Output
2
3
1
Hint
|A[i]|<=10000,1<=N<=10000,1<=M<=10000
思路:
首先用https://vjudge.net/problem/SPOJ-GSS3 这题的模板可以维护正常的区间询问,单点修改的线段树维护区间最大子段和问题。
然后对于题目的给定两个区间中分别选一个l和r问题,
我们进行分类讨论,我们看答案可能是哪种情况。
首先,如果x2>y1 那么答案就是 ( x1~y1 )中最大后缀数值+ ( y1~x2 ) 区间的数值sum和+ ( x2 + y2 中区间的最大前缀和 )
否则 两个区间就一定有交叉的分布
即 数值的从小到大的顺序是这样: x1,x2,y1 , y2
那么答案可能是以下三种情况:
1、x2~y1 中的最大子段和。
2、l在 x1~x2 之间,y在x2~y2区间
3、l在x1~y1 之间,y在y1~y2 区间,
这三种情况就包含了所有可能。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 50000 + 7;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
struct node {
int l;
int r;
ll num;
ll lm;
ll sum;
ll rm;
} segment_tree[maxn << 2];
int n;
void pushup(int rt)
{
segment_tree[rt].sum = segment_tree[rt << 1].sum + segment_tree[rt << 1 | 1].sum;
segment_tree[rt].lm = max(segment_tree[rt << 1].lm, segment_tree[rt << 1].sum + segment_tree[rt << 1 | 1].lm);
segment_tree[rt].rm = max(segment_tree[rt << 1 | 1].rm, segment_tree[rt << 1 | 1].sum + segment_tree[rt << 1].rm);
segment_tree[rt].num = max(segment_tree[rt << 1].num, segment_tree[rt << 1 | 1].num);
segment_tree[rt].num = max(segment_tree[rt].num, segment_tree[rt << 1].rm + segment_tree[rt << 1 | 1].lm);
}
void build(int rt, int l, int r)
{
segment_tree[rt].l = l;
segment_tree[rt].r = r;
if (l == r) {
scanf("%lld", &segment_tree[rt].num);
segment_tree[rt].lm = segment_tree[rt].rm = segment_tree[rt].num;
segment_tree[rt].sum = segment_tree[rt].num;
return ;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
pushup(rt);
}
node ask(int rt, int l, int r)
{
if (l > r) {
return node{0, 0, 0, 0, 0, 0};
}
if (segment_tree[rt].l == l && segment_tree[rt].r == r) {
return segment_tree[rt];
}
int mid = (segment_tree[rt].r + segment_tree[rt].l) >> 1;
if (l > mid) {
return ask(rt << 1 | 1, l, r);
} else if (r <= mid) {
return ask(rt << 1, l, r);
} else {
node res1 = ask(rt << 1, l, mid);
node res2 = ask(rt << 1 | 1, mid + 1, r);
node res;
res.sum = res1.sum + res2.sum;
res.lm = max(res1.lm, res1.sum + res2.lm);
res.rm = max(res2.rm, res2.sum + res1.rm);
res.num = max(res1.num, res2.num);
res.num = max(res.num, res1.rm + res2.lm);
return res;
}
}
void update(int rt, int x, int val)
{
if (segment_tree[rt].l == x && segment_tree[rt].r == x) {
segment_tree[rt].num = val;
segment_tree[rt].lm = val;
segment_tree[rt].rm = val;
segment_tree[rt].sum = val;
return ;
}
int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;
if (x <= mid) {
update(rt << 1, x, val);
} else {
update(rt << 1 | 1, x, val);
}
pushup(rt);
}
ll solve(int x1, int y1, int x2, int y2)
{
if (y1 < x2) {
ll res = ask(1, x1, y1).rm;
res += ask(1, y1 + 1, x2 - 1).sum;
res += ask(1, x2, y2).lm;
return res;
} else {
ll res = ask(1, x2, y1).num;
res = max(res, ask(1, x1, x2).rm + ask(1, x2, y2).lm - ask(1, x2, x2).sum);
res = max(res, ask(1, x1, y1).rm + ask(1, y1, y2).lm - ask(1, y1, y1).sum);
return res;
}
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
int t;
scanf("%d", &t);
while (t--) {
scanf("%d", &n);
build(1, 1, n);
int m;
scanf("%d", &m);
while (m--) {
int x1, x2, y1, y2;
scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
printf("%lld\n", solve(x1, y1, x2, y2));
}
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Can you answer these queries V SPOJ - GSS5 (分类讨论+线段树维护区间最大子段和)的更多相关文章
- SPOJ - GSS1-Can you answer these queries I 线段树维护区间连续和最大值
SPOJ - GSS1:https://vjudge.net/problem/SPOJ-GSS1 参考:http://www.cnblogs.com/shanyr/p/5710152.html?utm ...
- Can you answer these queries I SPOJ - GSS1 (线段树维护区间连续最大值/最大连续子段和)
You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A query is defi ...
- Spoj 1557 Can you answer these queries II 线段树 随意区间最大子段和 不反复数字
题目链接:点击打开链接 每一个点都是最大值,把一整个序列和都压缩在一个点里. 1.普通的区间求和就是维护2个值,区间和Sum和延迟标志Lazy 2.Old 是该区间里出现过最大的Sum, Oldlaz ...
- SP1043 GSS1 - Can you answer these queries I(线段树,区间最大子段和(静态))
题目描述 给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y} ...
- Can you answer these queries? HDU - 4027 (线段树,区间开平方,区间求和)
A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use ...
- GSS5 spoj 2916. Can you answer these queries V 线段树
gss5 Can you answer these queries V 给出数列a1...an,询问时给出: Query(x1,y1,x2,y2) = Max { A[i]+A[i+1]+...+A[ ...
- SPOJ GSS1 - Can you answer these queries I(线段树维护GSS)
Can you answer these queries I SPOJ - GSS1 You are given a sequence A[1], A[2], -, A[N] . ( |A[i]| ≤ ...
- SPOJ 1557 GSS2 - Can you answer these queries II (线段树+维护历史最值)
都说这题是 GSS 系列中最难的,今天做了一下,名副其实 首先你可以想到各种各样的在线乱搞想法,线段树,主席树,平衡树,等等,但发现都不太可行. 注意到题目也没有说强制在线,因此可以想到离线地去解决这 ...
- [Codeforces]817F. MEX Queries 离散化+线段树维护
[Codeforces]817F. MEX Queries You are given a set of integer numbers, initially it is empty. You sho ...
随机推荐
- Lua易忘点
仅针对自己 __index的理解 __index是:当我们访问一个表中的元素不存在时,则会触发去寻找__index元方法,如果不存在,则返回nil,如果存在,则返回结果 Window = {} Win ...
- 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...
- 《精通并发与Netty》学习笔记(05 - Google Protobuf与Netty的结合)
protobuf是由Google开发的一套对数据结构进行序列化的方法,可用做通信协议,数据存储格式,等等.其特点是不限语言.不限平台.扩展性强 Netty也提供了对Protobuf的天然支持,我们今天 ...
- SpringCloud学习(五)路由网关(zuul)(Finchley版本)
在微服务架构中,需要几个基础的服务治理组件,包括服务注册与发现.服务消费.负载均衡.断路器.智能路由.配置管理等,由这几个基础组件相互协作,共同组建了一个简单的微服务系统.一个简单的微服务系统如下图: ...
- Notepad++ 用法技巧
1 搜索技巧 [搜索中文]用正则表达式搜索:[一-龥] 2 用于SWIG语法的模板配置 notepad++是Windows平台上非常优秀的文本编辑器,速度快,功能强,还能自定义语言模板呢.很好用! 这 ...
- poj3162(树形dp+线段树求最大最小值)
题目链接:https://vjudge.net/problem/POJ-3162 题意:给一棵树,求每个结点的树上最远距离,记为a[i],然后求最大区间[l,r]满足区间内的max(a[i])-min ...
- [转帖]如何在VirtualBox中运行macOS Catalina Beta版本
如何在VirtualBox中运行macOS Catalina Beta版本 secist2019-08-03共2179人围观系统安全 https://www.freebuf.com/articles/ ...
- Oracle-DQL 1- select基础
说明:语句中说到的“表”,以及表中有哪些“列”自行脑补......重要的是理解概念,能看懂语句代表的含义就可以了~ DQL-数据查询语句: 1.* 表示所有列SELECT * FROM emp; 2. ...
- SpringBoot起飞系列-拦截器和统一错误处理(七)
一.前言 在前边部分我们已经学会了基本的web开发流程,在web开发中,我们通常会对请求做统一处理,比如未登录的用户要拦截掉相关请求,报错页面统一显示等等,这些都需要配置,可以大大简化我们的代码,实现 ...
- 用SPFA 解决POJ2240
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 30790 Accepted: 12761 Descr ...