转自:http://www.cnblogs.com/forfuture1978/archive/2009/12/14/1623599.html

上面曾经交代过,Lucene保存了从Index到Segment到Document到Field一直到Term的正向信息,也包括了从Term到Document映射的反向信息,还有其他一些Lucene特有的信息。下面对这三种信息一一介绍。

4.1. 正向信息

Index –> Segments (segments.gen, segments_N) –> Field(fnm, fdx, fdt) –> Term (tvx, tvd, tvf)

上面的层次结构不是十分的准确,因为segments.gen和segments_N保存的是段(segment)的元数据信息(metadata),其实是每个Index一个的,而段的真正的数据信息,是保存在域(Field)和词(Term)中的。

4.1.1. 段的元数据信息(segments_N)

一个索引(Index)可以同时存在多个segments_N(至于如何存在多个segments_N,在描述完详细信息之后会举例说明),然而当我们要打开一个索引的时候,我们必须要选择一个来打开,那如何选择哪个segments_N呢?

Lucene采取以下过程:

  • 其一,在所有的segments_N中选择N最大的一个。基本逻辑参照SegmentInfos.getCurrentSegmentGeneration(File[] files),其基本思路就是在所有以segments开头,并且不是segments.gen的文件中,选择N最大的一个作为genA。
  • 其二,打开segments.gen,其中保存了当前的N值。其格式如下,读出版本号(Version),然后再读出两个N,如果两者相等,则作为genB。

  • IndexInput genInput = directory.openInput(IndexFileNames.SEGMENTS_GEN);//"segments.gen" 
    int version = genInput.readInt();//读出版本号 
    if (version == FORMAT_LOCKLESS) {//如果版本号正确 
        long gen0 = genInput.readLong();//读出第一个N 
        long gen1 = genInput.readLong();//读出第二个N 
        if (gen0 == gen1) {//如果两者相等则为genB 
            genB = gen0; 
        } 
    }

  • 其三,在上述得到的genA和genB中选择最大的那个作为当前的N,方才打开segments_N文件。其基本逻辑如下:

    if (genA > genB) 
        gen = genA; 
    else 
        gen = genB;

如下图是segments_N的具体格式:

  • Format:

    • 索引文件格式的版本号。
    • 由于Lucene是在不断开发过程中的,因而不同版本的Lucene,其索引文件格式也不尽相同,于是规定一个版本号。
    • Lucene 2.1此值-3,Lucene 2.9时,此值为-9。
    • 当用某个版本号的IndexReader读取另一个版本号生成的索引的时候,会因为此值不同而报错。
  • Version:
    • 索引的版本号,记录了IndexWriter将修改提交到索引文件中的次数。
    • 其初始值大多数情况下从索引文件里面读出,仅仅在索引开始创建的时候,被赋予当前的时间,已取得一个唯一值。
    • 其值改变在IndexWriter.commit->IndexWriter.startCommit->SegmentInfos.prepareCommit->SegmentInfos.write->writeLong(++version)
    • 其初始值之所最初取一个时间,是因为我们并不关心IndexWriter将修改提交到索引的具体次数,而更关心到底哪个是最新的。IndexReader中常比较自己的version和索引文件中的version是否相同来判断此IndexReader被打开后,还有没有被IndexWriter更新。

//在DirectoryReader中有一下函数。

public boolean isCurrent() throws CorruptIndexException, IOException { 
  return SegmentInfos.readCurrentVersion(directory) == segmentInfos.getVersion(); 
}

  • NameCount

    • 是下一个新段(Segment)的段名。
    • 所有属于同一个段的索引文件都以段名作为文件名,一般为_0.xxx, _0.yyy,  _1.xxx, _1.yyy ……
    • 新生成的段的段名一般为原有最大段名加一。
    • 如同的索引,NameCount读出来是2,说明新的段为_2.xxx, _2.yyy

  • SegCount

    • 段(Segment)的个数。
    • 如上图,此值为2。
  • SegCount个段的元数据信息:
    • SegName

      • 段名,所有属于同一个段的文件都有以段名作为文件名。
      • 如上图,第一个段的段名为"_0",第二个段的段名为"_1"
    • SegSize
      • 此段中包含的文档数
      • 然而此文档数是包括已经删除,又没有optimize的文档的,因为在optimize之前,Lucene的段中包含了所有被索引过的文档,而被删除的文档是保存在.del文件中的,在搜索的过程中,是先从段中读到了被删除的文档,然后再用.del中的标志,将这篇文档过滤掉。
      • 如下的代码形成了上图的索引,可以看出索引了两篇文档形成了_0段,然后又删除了其中一篇,形成了_0_1.del,又索引了两篇文档形成_1段,然后又删除了其中一篇,形成_1_1.del。因而在两个段中,此值都是2。

IndexWriter writer = new IndexWriter(FSDirectory.open(INDEX_DIR), new StandardAnalyzer(Version.LUCENE_CURRENT), true, IndexWriter.MaxFieldLength.LIMITED); 
writer.setUseCompoundFile(false); 
indexDocs(writer, docDir);//docDir中只有两篇文档

//文档一为:Students should be allowed to go out with their friends, but not allowed to drink beer.

//文档二为:My friend Jerry went to school to see his students but found them drunk which is not allowed.

writer.commit();//提交两篇文档,形成_0段。

writer.deleteDocuments(new Term("contents", "school"));//删除文档二 
writer.commit();//提交删除,形成_0_1.del 
indexDocs(writer, docDir);//再次索引两篇文档,Lucene不能判别文档与文档的不同,因而算两篇新的文档。 
writer.commit();//提交两篇文档,形成_1段 
writer.deleteDocuments(new Term("contents", "school"));//删除第二次添加的文档二 
writer.close();//提交删除,形成_1_1.del

DelGen

  • .del文件的版本号
  • Lucene中,在optimize之前,删除的文档是保存在.del文件中的。
  • 在Lucene 2.9中,文档删除有以下几种方式:
    • IndexReader.deleteDocument(int docID)是用IndexReader按文档号删除。
    • IndexReader.deleteDocuments(Term term)是用IndexReader删除包含此词(Term)的文档。
    • IndexWriter.deleteDocuments(Term term)是用IndexWriter删除包含此词(Term)的文档。
    • IndexWriter.deleteDocuments(Term[] terms)是用IndexWriter删除包含这些词(Term)的文档。
    • IndexWriter.deleteDocuments(Query query)是用IndexWriter删除能满足此查询(Query)的文档。
    • IndexWriter.deleteDocuments(Query[] queries)是用IndexWriter删除能满足这些查询(Query)的文档。

lucene正向索引——正向信息,Index –> Segments (segments.gen, segments_N) –> Field(fnm, fdx, fdt) –> Term (tvx, tvd, tvf)的更多相关文章

  1. Lucene学习总结之三:Lucene的索引文件格式(1)

    Lucene的索引里面存了些什么,如何存放的,也即Lucene的索引文件格式,是读懂Lucene源代码的一把钥匙. 当我们真正进入到Lucene源代码之中的时候,我们会发现: Lucene的索引过程, ...

  2. Lucene学习之四:Lucene的索引文件格式(2)

    本文转载自:http://www.cnblogs.com/forfuture1978/archive/2009/12/14/1623599.html  略有删减和补充 四.具体格式 上面曾经交代过,L ...

  3. Lucene学习总结之三:Lucene的索引文件格式(1) 2014-06-25 14:15 1124人阅读 评论(0) 收藏

    Lucene的索引里面存了些什么,如何存放的,也即Lucene的索引文件格式,是读懂Lucene源代码的一把钥匙. 当我们真正进入到Lucene源代码之中的时候,我们会发现: Lucene的索引过程, ...

  4. Lucene系列-索引文件

    本文介绍下lucene生成的索引有哪些文件组成,每个文件包含了什么信息.基于Lucene 4.10.0. 数据结构 索引(index)包含了存储的文档(document)正排.倒排信息,用于文本搜索. ...

  5. Solr4.8.0源码分析(8)之Lucene的索引文件(1)

    Solr4.8.0源码分析(8)之Lucene的索引文件(1) 题记:最近有幸看到觉先大神的Lucene的博客,感觉自己之前学习的以及工作的太为肤浅,所以决定先跟随觉先大神的博客学习下Lucene的原 ...

  6. ES doc_values的来源,field data——就是doc->terms的正向索引啊,不过它是在查询阶段通过读取倒排索引loading segments放在内存而得到的?

    Support in the Wild: My Biggest Elasticsearch Problem at Scale Java Heap Pressure Elasticsearch has ...

  7. lucene正向索引(续)——每次commit会形成一个新的段,段"_1"的域和词向量信息可能存在"_0.fdt"和"_0.fdx”中

    DocStoreOffset DocStoreSegment DocStoreIsCompoundFile 对于域(Stored Field)和词向量(Term Vector)的存储可以有不同的方式, ...

  8. lucene正向索引(续)——一个文档的所有filed+value都在fdt文件中!!!

    4.1.3. 域(Field)的数据信息(.fdt,.fdx) 域数据文件(fdt): 真正保存存储域(stored field)信息的是fdt文件 在一个段(segment)中总共有segment ...

  9. lucene反向索引——倒排表无论是文档号及词频,还是位置信息,都是以跳跃表的结构存在的

    转自:http://www.cnblogs.com/forfuture1978/archive/2010/02/02/1661436.html 4.2. 反向信息 反向信息是索引文件的核心,也即反向索 ...

随机推荐

  1. iOS - UIWebView和WKWebView的比较和选择-作为H5容器的一些探究

    一.Native开发中为什么需要H5容器 Native开发原生应用是手机操作系统厂商(目前主要是苹果的iOS和google的Android)对外界提供的标准化的开发模式,他们对于native开发提供了 ...

  2. 微信开发者工具 关于no such file or directory

    在新建页面中,保存后弹出 “ no such file or directory ” 错误 原因是打开了一个文件,然后在目录树中删除了它,但是这个被删除的页面依旧在打开状态,开发者工具在编译保存时由于 ...

  3. Spring之AOP原理、代码、使用详解(XML配置方式)

    Spring 的两大核心,一是IOC,另一个是AOP,本博客从原理.AOP代码以及AOP使用三个方向来讲AOP.先给出一张AOP相关的结构图,可以放大查看. 一.Spring AOP 接口设计 1.P ...

  4. MongoDB简介,安装,增删改查

    MongoDB到底是什么鬼? 最近有太多的同学向我提起MongoDB,想要学习MongoDB,还不知道MongoDB到底是什么鬼,或者说,知道是数据库,知道是文件型数据库,但是不知道怎么来用 那么好, ...

  5. 一份数据分析学习清单.xls

    今天给大家整理一份数据分析的学习清单,打算了解学习这方面的同学可以看看,基本上大的需要学习的点都有涉及:具体细节知识的学习建议大家亲自去动手制作思维导图,自己动手梳理知识脉络. 上期入口:18个堪称神 ...

  6. 华为SDN:解决传统网络3大问题

    转:http://mp.ofweek.com/tele/a145613326756 科技潮人 2013-08-05 14:20 传统网络之困 互联网爆炸式增长,除了规模和发展速度远超之前所有曾出现的数 ...

  7. spark 实现多文件输出

    需求 不同的key输出到不同的文件 txt文件 multiple.txt 中国;22 美国;4342 中国;123 日本;44 日本;6 美国;55 美国;43765 日本;786 日本;55 sca ...

  8. Linux学习笔记(十六)Linux网络管理:网络基础(一)

    一.OSI7层模型协议 二.TCP/IP四层协议模型(五层) 1.网络接入层 网络接入层与OSI参考模型中的物理层和数据链路层相对应,它负责监视数据在主机和网络之间的交换.事实上,TCP/IP本身并未 ...

  9. jquery基础知识2

    1.js和jquery对象的转换 js==>jquery对象 $(js对象) jquery==>js jq对象[index] jq对象.get(index) <!DOCTYPE ht ...

  10. webuploader只选择单张图片

    webuploader只选择单张图片 一.总结 一句话总结: 在WebUploader.create中配置一下pick即可 pick: { id: '#filePicker', multiple:fa ...