C Vus the Cossack and Strings ( 异或 思维)
题意 : 给你两个只包含 0 和 1 的字符串 a, b,定义函数 f ( A, B ) 为 字符串A和字符串B 比较
存在多少个位置 i 使得 A[ i ] != B[ i ] ,例如
- f(00110,01100)=2
- f(00110,11000)=4
- f(00110,10001)=4
- f(00110,00010)=1
问你 取出 a 中 所有 长度 为 lenb (字符串b的长度) 的子串 c, 求 f ( c, b) 为偶数的 c 的个数。
解 : 显然, a 中 存在 lena - lenb + 1 个 c, 直接枚举显然是爆的, 字符串只包含 0 1 且 题目只问 f ( b, c ) 的奇偶性。
想到异或,若 在位置 i 上 b[ i ] != c[ i ], 则 b[ i ] ^ c[ i ] = 1; 否则 b[ i ] ^ c[ i ] = 0;
所以可以 用 一个 ans 来记录 f ( b, c) 的奇偶性, 那么只要枚举 b字符串的长度,然后 ans = ans ^ b[ i ] ^ c[ i ] 就行了
最后判断一下 ans 的奇偶性看满不满足就行了。
这题的关键是 a 的 长度为 lenb 的子串 c 有很多, 你不可能对于每个 c 都去遍历一遍 b字符串。
首先,枚举a 的所有长度为 lenb 的子串 c 枚举 i , 字符串 c 就是 a[ i ] ~ a[ i + lenb - 1];
首先,先取第一个 c ; a[ 0 ] ~ a[ lenb - 1] 与 b 进行比较 求出 ans0;
然后 对于 第二个 c : a[ 1 ] ~ a[ lenb ] 的 ans1 就会等于 ans0 ^ a[ 0 ] ^ a[ lenb ];
同理 对于 第 i 个 c: a[ i ] ~ a[ i + lenb - 1 ] 的 ans( i ) = ans( i - 1 ) ^ a[ i - 1 ] ^ a[ i + lenb - 1]
为什么可以这样写呢; 那就是 因为异或的性质啦。 异或 a [ i - 1 ] 是消除 a[ i - 1 ] 的影响
异或 a [ i + lenb - 1] 是加入计算;
举个例: 现在令 a = 01100010 ; b = 00110;
第一个 c 的 ans 是
( 0 ^ 0 )^( 1 ^ 0 )^( 1 ^ 1 )^( 0 ^ 1 )^( 0 ^ 0 )
第二个 c 的 ans
( 0 ^ 0 )^( 1 ^ 0 )^( 1 ^ 1 )^( 0 ^ 1 )^( 0 ^ 0 )^ 0 ^ 0 // 第一个0 是a[ i - 1 ],第二个0是a[ i + lenb - 1 ];
= 0 ^ ( 0 ^ 0 )^( 1 ^ 0 )^( 1 ^ 1 )^( 0 ^ 1 )^( 0 ^ 0 )^ 0 // 异或两次相当于没有异或
= ( 0 ^ 1)^( 0 ^ 1 )^( 1 ^ 0 )^( 1 ^ 0 )^( 0 ^ 0 )
用到了 异或 运算 的 交换律 和 异或两次等于没异或的性质。 挺巧妙的这个思维。
代码里 的 i 和我说的 i 不一样,不过道理都是一样的啦;
#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#define LL long long
#define ULL unsigned long long
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define dep(i,j,k) for(int i=k;i>=j;i--)
#define INF 0x3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
#define make(i,j) make_pair(i,j)
#define pb push_back
#define Pi acos(-1.0)
using namespace std;
const int N = ;
int main() {
string a, b;
cin >> a >> b;
int ans = , coun = ;
int lena = a.size(); int lenb = b.size();
rep(i, , lenb - ) ans = ans ^ ( a[i] - '') ^ (b[i] - '');
if(ans % == ) coun++;
rep(i, lenb, lena - ) {
ans = ans ^ (a[i - lenb] - '') ^ (a[i] - '');
if(ans % == ) coun++;
}
cout << coun << endl;
return ;
}
C Vus the Cossack and Strings ( 异或 思维)的更多相关文章
- CodeForces - 1186 C. Vus the Cossack and Strings (异或)
Vus the Cossack has two binary strings, that is, strings that consist only of "0" and &quo ...
- Vus the Cossack and Strings(Codeforces Round #571 (Div. 2))(大佬的位运算实在是太强了!)
C. Vus the Cossack and Strings Vus the Cossack has two binary strings, that is, strings that consist ...
- codeforces 1186C Vus the Cossack and Strings
题目链接:https://codeforc.es/contest/1186/problem/C 题目大意:xxxxx(自认为讲不清.for instance) 例如:a="01100010& ...
- Codeforces F. Vus the Cossack and Numbers(贪心)
题目描述: D. Vus the Cossack and Numbers Vus the Cossack has nn real numbers aiai. It is known that the ...
- E. Vus the Cossack and a Field (求一有规律矩形区域值) (有一结论待证)
E. Vus the Cossack and a Field (求一有规律矩形区域值) 题意:给出一个原01矩阵,它按照以下规则拓展:向右和下拓展一个相同大小的 0 1 分别和原矩阵对应位置相反的矩阵 ...
- Codeforces Round #571 (Div. 2)-D. Vus the Cossack and Numbers
Vus the Cossack has nn real numbers aiai. It is known that the sum of all numbers is equal to 00. He ...
- 题解【Codeforces1186A】 Vus the Cossack and a Contest
这题是入门难度的题目吧-- 根据题意可以得出,只有当\(m\)和\(k\)都大于等于\(n\)时,\(Vus\)才可以实现他的计划. 因此,我们不难得出以下\(AC\)代码: #include < ...
- 『Codeforces 1186E 』Vus the Cossack and a Field (性质+大力讨论)
Description 给出一个$n\times m$的$01$矩阵$A$. 记矩阵$X$每一个元素取反以后的矩阵为$X'$,(每一个cell 都01倒置) 定义对$n \times m$的矩阵$A$ ...
- Codeforces 1186F - Vus the Cossack and a Graph 模拟乱搞/欧拉回路
题意:给你一张无向图,要求对这张图进行删边操作,要求删边之后的图的总边数 >= ceil((n + m) / 2), 每个点的度数 >= ceil(deg[i] / 2).(deg[i]是 ...
随机推荐
- Elastic Search对Document的搜索
在ES中使用的重点.ES中存储的数据.核心就是为了提供全文搜索能力的.搜索功能非常重要.多练. 1 query string searchsearch的参数都是类似http请求头中的字符串参数提供搜索 ...
- B2B、B2C、C2C、O2O分别是什么意思?
1.B2B 是指进行电子商务交易的供需双方都是商家(或企业.公司),她(他)们使用了互联网的技术或各种商务网络平台,完成商务交易的过程.电子商务是现代 B2B marketing的一种具体主要的表现形 ...
- Qt Model/View理解(二)---构造model(细心研读,发现超简单,Model就是做三件事:返回行数量、列数量、data如何显示。然后把model与view联系起来即可,两个例子都是如此)good
数据是一个集合,显示也是一个集合.例如一篇<西游记>的文章,所有的文字就是数据集合,展示方式就是显示的集合,可以以书本的形式,也可以以电纸书的形式,更可以用视频的方式展现. 下面是将一个二 ...
- mysql 8.x 集群出现:Last_IO_Error: error connecting to master 'repl@xxx:3306' - retry-time: 60 retries: 1
网上的经验:网络不同,账号密码不对,密码太长,密码由 # 字符:检查MASTER_HOST,MASTER_USER,MASTER_PASSWORD(不知道 MASTER_LOG_FILE 有没有影响) ...
- 随便----js参考书
一.Javascript方面的书籍: 1 JavaScript权威指南(第6版):号称javascript圣经,前端必备:前端程序员学习核心JavaScript语言和由Web浏览器定义的JavaScr ...
- JS downLoad
$.fileDownload(url, { httpMethod: 'GET', data: null, prepareCallback: function (url) { layer.msg(&qu ...
- python版本
一般在Linux下,默认会安装一个python2.*的版本,但是我们自己开发有时候需要python3.*的版本 1. 安装python3 .安装依赖包 )首先安装gcc编译器,gcc有些系统版本已经默 ...
- 帝国cms列表内容模板加上数字编号
/*这个[!--no.num--]指的是信息编号.每次增加1*/ <li data-eq="[!--no.num--]"> <div class="ti ...
- java 常用日期工具类的操作
获取指定日期的时间戳 /* * 获取指定日期的时间戳 * */ public static long getMillis(String date_str){ try { SimpleDateForma ...
- delphi FMX APP程序图标,闪屏,程序名