面试之路(6)-BAT面试之操作系统内存详解
本文主要参考两篇博客,读后整理出来,以供大家阅读,链接如下:
http://blog.jobbole.com/95499/?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io
http://blog.xiaohansong.com/2015/10/05/Linux%E5%86%85%E5%AD%98%E5%AF%BB%E5%9D%80%E4%B9%8B%E5%88%86%E9%A1%B5%E6%9C%BA%E5%88%B6/?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io
本文主要内容:
本文讲述操作系统对于内存的管理的过去和现在,以及一些页替换的算法的介绍。
进程的简单介绍
进程是占有资源的最小单位,这个资源当然包括内存。在现代操作系统中,每个进程所能访问的内存是互相独立的(一些交换区除外)。而进程中的线程所以共享进程所分配的内存空间。
在操作系统的角度来看,进程=程序+数据+PCB(进程控制块)。
没有内存抽象
在早些的操作系统中,并没有引入内存抽象的概念。程序直接访问和操作的都是物理内存。比如当执行如下指令时:
1
mov reg1,1000
这条指令会毫无想象力的将物理地址1000中的内容赋值给寄存器。不难想象,这种内存操作方式使得操作系统中存在多进程变得完全不可能,比如MS-DOS,你必须执行完一条指令后才能接着执行下一条。如果是多进程的话,由于直接操作物理内存地址,当一个进程给内存地址1000赋值后,另一个进程也同样给内存地址赋值,那么第二个进程对内存的赋值会覆盖第一个进程所赋的值,这回造成两条进程同时崩溃。
没有内存抽象对于内存的管理通常非常简单,除去操作系统所用的内存之外,全部给用户程序使用。或是在内存中多留一片区域给驱动程序使用,如图1所示。
第一种情况操作系统存于RAM中,放在内存的低地址,第二种情况操作系统存在于ROM中,存在内存的高地址,一般老式的手机操作系统是这么设计的。
如果这种情况下,想要操作系统可以执行多进程的话,唯一的解决方案就是和硬盘搞交换,当一个进程执行到一定程度时,整个存入硬盘,转而执行其它进程,到需要执行这个进程时,再从硬盘中取回内存,只要同一时间内存中只有一个进程就行,这也就是所谓的交换(Swapping)技术。但这种技术由于还是直接操作物理内存,依然有可能引起进程的崩溃。
所以,通常来说,这种内存操作往往只存在于一些洗衣机,微波炉的芯片中,因为不可能有第二个进程去征用内存。
内存抽象
为了解决直接操作内存带来的各种问题,引入的地址空间(Address Space),这允许每个进程拥有自己的地址。这还需要硬件上存在两个寄存器,基址寄存器(base register)和界址寄存器(limit register),第一个寄存器保存进程的开始地址,第二个寄存器保存上界,防止内存溢出。在内存抽象的情况下,当执行
mov reg1,20
这时,实际操作的物理地址并不是20,而是根据基址和偏移量算出实际的物理地址进程操作,此时操作的实际地址可能是:
mov reg1,16245
在这种情况下,任何操作虚拟地址的操作都会被转换为操作物理地址。而每一个进程所拥有的内存地址是完全不同的,因此也使得多进程成为可能。
但此时还有一个问题,通常来说,内存大小不可能容纳下所有并发执行的进程。因此,交换(Swapping)技术应运而生。这个交换和前面所讲的交换大同小异,只是现在讲的交换在多进程条件下。交换的基本思想是,将闲置的进程交换出内存,暂存在硬盘中,待执行时再交换回内存,比如下面一个例子,当程序一开始时,只有进程A,逐渐有了进程B和C,此时来了进程D,但内存中没有足够的空间给进程D,因此将进程B交换出内存,分给进程D。如图2所示。
通过图2,我们还发现一个问题,进程D和C之间的空间由于太小无法另任何进程使用,这也就是所谓的外部碎片。一种方法是通过紧凑技术(Memory Compaction)解决,通过移动进程在内存中的地址,使得这些外部碎片空间被填满。还有一些讨巧的方法,比如内存整理软件,原理是申请一块超大的内存,将所有进程置换出内存,然后再释放这块内存,从而使得从新加载进程,使得外部碎片被消除。这也是为什么运行完内存整理会狂读硬盘的原因。另外,使用紧凑技术会非常消耗CPU资源,一个2G的CPU没10ns可以处理4byte,因此多一个2G的内存进行一次紧凑可能需要好几秒的CPU时间。
进程内存是动态变化的
实际情况下,进程往往会动态增长,因此创建进程时分配的内存就是个问题了,如果分配多了,会产生内部碎片,浪费了内存,而分配少了会造成内存溢出。一个解决方法是在进程创建的时候,比进程实际需要的多分配一点内存空间用于进程的增长。一种是直接多分配一点内存空间用于进程在内存中的增长,另一种是将增长区分为数据段和栈(用于存放返回地址和局部变量),如图3所示。
空间不足的解决方案
当预留的空间不够满足增长时,操作系统首先会看相邻的内存是否空闲,如果空闲则自动分配,如果不空闲,就将整个进程移到足够容纳增长的空间内存中,如果不存在这样的内存空间,则会将闲置的进程置换出去。
内存的管理策略
当允许进程动态增长时,操作系统必须对内存进行更有效的管理,操作系统使用如下两种方法之一来得知内存的使用情况,分别为1)位图(bitmap) 2)链表
使用位图,将内存划为多个大小相等的块,比如一个32K的内存1K一块可以划为32块,则需要32位(4字节)来表示其使用情况,使用位图将已经使用的块标为1,位使用的标为0.而使用链表,则将内存按使用或未使用分为多个段进行链接,这个概念如图4所示。
使用链表中的P表示进程,从0-2是进程,H表示空闲,从3-4表示是空闲。
使用位图表示内存简单明了,但一个问题是当分配内存时必须在内存中搜索大量的连续0的空间,这是十分消耗资源的操作。相比之下,使用链表进行此操作将会更胜一筹。还有一些操作系统会使用双向链表,因为当进程销毁时,邻接的往往是空内存或是另外的进程。使用双向链表使得链表之间的融合变得更加容易。
还有,当利用链表管理内存的情况下,创建进程时分配什么样的空闲空间也是个问题。通常情况下有如下几种算法来对进程创建时的空间进行分配。
临近适应算法(Next fit)—从当前位置开始,搜索第一个能满足进程要求的内存空间
最佳适应算法(Best fit)—搜索整个链表,找到能满足进程要求最小内存的内存空间
最大适应算法(Wrost fit)—找到当前内存中最大的空闲空间
首次适应算法(First fit) —从链表的第一个开始,找到第一个能满足进程要求的内存空间
虚拟内存(Virtual Memory)
虚拟内存是现代操作系统普遍使用的一种技术。前面所讲的抽象满足了多进程的要求,但很多情况下,现有内存无法满足仅仅一个大进程的内存要求(比如很多游戏,都是10G+的级别)。在早期的操作系统曾使用覆盖(overlays)来解决这个问题,将一个程序分为多个块,基本思想是先将块0加入内存,块0执行完后,将块1加入内存。依次往复,这个解决方案最大的问题是需要程序员去程序进行分块,这是一个费时费力让人痛苦不堪的过程。后来这个解决方案的修正版就是虚拟内存。
虚拟内存的基本思想是,每个进程有用独立的逻辑地址空间,内存被分为大小相等的多个块,称为页(Page).每个页都是一段连续的地址。对于进程来看,逻辑上貌似有很多内存空间,其中一部分对应物理内存上的一块(称为页框,通常页和页框大小相等),还有一些没加载在内存中的对应在硬盘上,如图5所示。
由图5可以看出,虚拟内存实际上可以比物理内存大。当访问虚拟内存时,会访问MMU(内存管理单元)去匹配对应的物理地址(比如图5的0,1,2),而如果虚拟内存的页并不存在于物理内存中(如图5的3,4),会产生缺页中断,从磁盘中取得缺的页放入内存,如果内存已满,还会根据某种算法将磁盘中的页换出。
而虚拟内存和物理内存的匹配是通过页表实现,页表存在MMU中,页表中每个项通常为32位,既4byte,除了存储虚拟地址和页框地址之外,还会存储一些标志位,比如是否缺页,是否修改过,写保护等。可以把MMU想象成一个接收虚拟地址项返回物理地址的方法。
因为页表中每个条目是4字节,现在的32位操作系统虚拟地址空间会是2的32次方,即使每页分为4K,也需要2的20次方*4字节=4M的空间,为每个进程建立一个4M的页表并不明智。因此在页表的概念上进行推广,产生二级页表,二级页表每个对应4M的虚拟地址,而一级页表去索引这些二级页表,因此32位的系统需要1024个二级页表,虽然页表条目没有减少,但内存中可以仅仅存放需要使用的二级页表和一级页表,大大减少了内存的使用。
分页机制:
为什么使用两级页表
假设每个进程都占用了4G的线性地址空间,页表共含1M个表项,每个表项占4个字节,那么每个进程的页表要占据4M的内存空间。为了节省页表占用的空间,我们使用两级页表。每个进程都会被分配一个页目录,但是只有被实际使用页表才会被分配到内存里面。一级页表需要一次分配所有页表空间,两级页表则可以在需要的时候再分配页表空间。
两级页表结构
两级表结构的第一级称为页目录,存储在一个4K字节的页面中。页目录表共有1K个表项,每个表项为4个字节,并指向第二级表。线性地址的最高10位(即位31~位32)用来产生第一级的索引,由索引得到的表项中,指定并选择了1K个二级表中的一个表。
两级表结构的第二级称为页表,也刚好存储在一个4K字节的页面中,包含1K个字节的表项,每个表项包含一个页的物理基地址。第二级页表由线性地址的中间10位(即位21~位12)进行索引,以获得包含页的物理地址的页表项,这个物理地址的高20位与线性地址的低12位形成了最后的物理地址,也就是页转化过程输出的物理地址。
线性地址到物理地址的转换
扩展分页
从奔腾处理器开始,Intel微处理器引进了扩展分页,它允许页的大小为4MB。
页面高速缓存:
页面替换算法
因为在计算机系统中,读取少量数据硬盘通常需要几毫秒,而内存中仅仅需要几纳秒。一条CPU指令也通常是几纳秒,如果在执行CPU指令时,产生几次缺页中断,那性能可想而知,因此尽量减少从硬盘的读取无疑是大大的提升了性能。而前面知道,物理内存是极其有限的,当虚拟内存所求的页不在物理内存中时,将需要将物理内存中的页替换出去,选择哪些页替换出去就显得尤为重要,如果算法不好将未来需要使用的页替换出去,则以后使用时还需要替换进来,这无疑是降低效率的,让我们来看几种页面替换算法。
最佳置换算法(Optimal Page Replacement Algorithm)
最佳置换算法是将未来最久不使用的页替换出去,这听起来很简单,但是无法实现。但是这种算法可以作为衡量其它算法的基准。
最近不常使用算法(Not Recently Used Replacement Algorithm)
这种算法给每个页一个标志位,R表示最近被访问过,M表示被修改过。定期对R进行清零。这个算法的思路是首先淘汰那些未被访问过R=0的页,其次是被访问过R=1,未被修改过M=0的页,最后是R=1,M=1的页。
先进先出页面置换算法(First-In,First-Out Page Replacement Algorithm)
这种算法的思想是淘汰在内存中最久的页,这种算法的性能接近于随机淘汰。并不好。
改进型FIFO算法(Second Chance Page Replacement Algorithm)
这种算法是在FIFO的基础上,为了避免置换出经常使用的页,增加一个标志位R,如果最近使用过将R置1,当页将会淘汰时,如果R为1,则不淘汰页,将R置0.而那些R=0的页将被淘汰时,直接淘汰。这种算法避免了经常被使用的页被淘汰。
时钟替换算法(Clock Page Replacement Algorithm)
虽然改进型FIFO算法避免置换出常用的页,但由于需要经常移动页,效率并不高。因此在改进型FIFO算法的基础上,将队列首位相连形成一个环路,当缺页中断产生时,从当前位置开始找R=0的页,而所经过的R=1的页被置0,并不需要移动页。如图6所示。
最久未使用算法(LRU Page Replacement Algorithm)
LRU算法的思路是淘汰最近最长未使用的页。这种算法性能比较好,但实现起来比较困难。
算法 描述
最佳置换算法 无法实现,最为测试基准使用
最近不常使用算法 和LRU性能差不多
先进先出算法 有可能会置换出经常使用的页
改进型先进先出算法 和先进先出相比有很大提升
最久未使用算法 性能非常好,但实现起来比较困难
时钟置换算法 非常实用的算法
总结:
上面几种算法或多或少有一些局部性原理的思想。局部性原理分为时间和空间上的局部性
1.时间上,最近被访问的页在不久的将来还会被访问。
2.空间上,内存中被访问的页周围的页也很可能被访问。
面试之路(6)-BAT面试之操作系统内存详解的更多相关文章
- 【6】-BAT面试之操作系统内存详解
本文主要参考两篇博客,读后整理出来,以供大家阅读,链接如下: http://blog.jobbole.com/95499/?hmsr=toutiao.io&utm_medium=toutiao ...
- 《Java面试全解析》1000道面试题大全详解(转)
<Java面试全解析>1000道 面试题大全详解 本人是 2009 年参加编程工作的,一路上在技术公司摸爬滚打,前几年一直在上海,待过的公司有 360 和游久游戏,因为自己家庭的原因,放弃 ...
- DELL R720服务器安装Windows Server 2008 R2 操作系统图文详解
DELL R720服务器安装Windows Server 2008 R2 操作系统图文详解 说明:此文章中部分图片为网络搜集,所以不一定为DELL R720服务器安装界面,但可保证界面内容接近DELL ...
- [js高手之路] es6系列教程 - 对象功能扩展详解
第一:字面量对象的方法,支持缩写形式 //es6之前,这么写 var User = { name : 'ghostwu', showName : function(){ return this.nam ...
- 【Android面试查漏补缺】之事件分发机制详解
前言 查漏补缺,查漏补缺,你不知道哪里漏了,怎么补缺呢?本文属于[Android面试查漏补缺]系列文章第一篇,持续更新中,感兴趣的朋友可以[关注+收藏]哦~ 本系列文章是对自己的前段时间面试经历的总结 ...
- (Dos)/BAT命令入门与高级技巧详解(转)
目录 第一章 批处理基础 第一节 常用批处理内部命令简介 1.REM 和 :: 2.ECHO 和 @ 3.PAUSE 4.ERRORLEVEL 5.TITLE 6.COLOR 7.mode 配置系统设 ...
- Unix操作系统监控详解(一)
一.描述 监控在检查系统问题运行状况以及优化系统性能工作上是一个不可缺少的部分.通过操作系统监控工具监视操作系统资源的使用情况,间接地反映了各服务器程序的运行情况.根据运行结果分析可以帮助我们快速定位 ...
- 前端面试之路之HTML面试真题
1.doctype的意义是什么 让浏览器以标准模式渲染 让浏览器知道元素的合法性 2.HTML XHTML HTML5的关系 HTML属于SGML XHTML属于XML,是HTML进行XML严格化的结 ...
- 2021大厂Android面试高频100题最新汇总(附答案详解)
前言 现在越来越多的人应聘工作时都得先刷个几十百来道题,不刷题感觉都过不了面试. 无论是前后端.移动开发,好像都得刷题,这么多人通过刷题过了面试,说明刷题对于找工作还是有帮助的. 不过这其中有一个问题 ...
随机推荐
- 5、Android Service测试
如果你在应用中使用了Service,你应该来测试这个Service来确保它正常工作.你可以创建仪表测试来验证Service的行为是否正确:比如,service保存和返回有效的数值并正常的处理数据. A ...
- iOS中的两种搜索方式UISearchDisplayController和UISearchController
大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请多提意见,如果觉得不错请多多支持点赞.谢谢! hopy ;) 以前iOS的搜索一般都使用UISearchDisplayCon ...
- iOS中 自定义cell分割线/分割线偏移 韩俊强的博客
在项目开发中我们会常常遇到tableView 的cell分割线显示不全,左边会空出一截像素,更有甚者想改变系统的分割线,并且只要上下分割线的一个等等需求,今天重点解决以上需求,仅供参考: 每日更新关注 ...
- Eclipse中如何快速查看jar包中 的class源码
我们查看jar源码时,一般是安装个jd-gui,把jar拷出来,然后从jd-gui中打开jar再查看源码,这个过程不免有些麻烦,当然,本篇所讲的快速查看的方法也没什么高科技手段,只是将jd-gui集成 ...
- there was no endpoint listening at net.pipe://localhost/PreviewProcessingService/ReportProcessing
当你在开发reporting service报表时,进行报表的preview时报下图中的错误,以下方法可以让你直接跳过这个错误,继续查看报表的运行结果. 直接选择你需要运行查看的报表右击run就可以, ...
- 最简单的基于FFmpeg的视频编码器-更新版(YUV编码为HEVC(H.265))
===================================================== 最简单的基于FFmpeg的视频编码器文章列表: 最简单的基于FFMPEG的视频编码器(YUV ...
- 还在繁琐的敲MVP接口和实现类吗,教你一秒搞定。
只有程序员懒起来,才能提高开发效率 233333 在MVP的使用过程中,我们需要反复的去写各种MVP的接口和实现类, 实在是 太麻烦了!!所以抽时间撸了一款插件(只可用于Intellj IDEA 和 ...
- UE4 射线拾取&三维画线
虽然有人建议UE4使用C++创建VR项目,能避免一些坑爹的错误,但是我用C++创建,竟然问题更多,还存在创建不了的情况,也不知道是不是我的操作问题,快疯了. 于是我还是选择了蓝图创建VR项目,但是.. ...
- Android项目-高考作文功能简介(一)
前言 : 开发安卓也已2年多了近3年了, 在自己刚入行的时候就有自己独立开发一个App的想法. 后来自己做了<<高考作文>>这一App. 后面续续断断的维护者. 也因为功能简 ...
- Chapter 3 Protecting the Data(2):分配列级权限
原文出处:http://blog.csdn.net/dba_huangzj/article/details/39577861,专题目录:http://blog.csdn.net/dba_huangzj ...