BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产
题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数
对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来
容斥容斥
\]
\(\ge i\)个同学没有,我们拿出来i个同学\(\binom{n}{i}\)个方案,剩下就是每种物品分成\(n-i\)组再乘起来罢了...
```cpp
#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int N=5005, P=1e9+7;
inline int read(){
char c=getchar();int x=0,f=1;
while(c'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&cint n, m, c[N];
ll inv[N], fac[N], facInv[N];
inline ll C(int n, int m) {return fac[n]facInv[m]%P facInv[n-m]%P;}
inline ll f(int c, int n) {return C(n+c-1, n-1);}
void solve() {
ll ans=0;
for(int i=0; i<=n; i++) {
ll t=1;
for(int j=1; j<=m; j++) t=(t * f(c[j], n-i))%P;
t = tC(n, i)%P;
(ans += (i&1) ? -t : t) %=P;
}
printf("%lld\n",(ans+P)%P);
}
int main() {
//freopen("in","r",stdin);
n=read(); m=read(); int lim=0;
for(int i=1; i<=m; i++) c[i]=read(), lim=max(lim, c[i]);
inv[1]=1; fac[0]=facInv[0]=1;
for(int i=1; i<=n+lim; i++) {
if(i!=1) inv[i] = (P-P/i)inv[P%i]%P;
fac[i] = fac[i-1]i%P;
facInv[i] = facInv[i-1]inv[i]%P;
}
solve();
}
BZOJ 4710: [Jsoi2011]分特产 [容斥原理]的更多相关文章
- BZOJ 4710 [Jsoi2011]分特产 解题报告
4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...
- ●BZOJ 4710 [Jsoi2011]分特产
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...
- bzoj 4710: [Jsoi2011]分特产
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- BZOJ 4710: [Jsoi2011]分特产(容斥)
传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...
- 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 99 Solved: 65 Description JYY 带 ...
- 4710: [Jsoi2011]分特产
4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...
- 【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学
题目描述 JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
随机推荐
- Trees on the level(指针法和非指针法构造二叉树)
Trees on the level Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- [国嵌攻略][159][SPI子系统]
SPI 子系统架构 1.SPI core核心:用于连接SPI客户驱动和SPI主控制器驱动,并且提供了对应的注册和注销的接口. 2.SPI controller driver主控制器驱动:用来驱动SPI ...
- [学习OpenCV攻略][010][写入AVI文件]
cvSize(文件宽度,文件高度) 通过图片或视频文件的宽高得到尺寸信息,返回值是CvSize cvCreateVideoWriter(输出文件名,编码格式,帧率,图像大小) 通过设置输出视频的格式信 ...
- windows平台下python 打包成exe可执行文件
第一步 安装 pyinstaller 命令行下运行:pip install pyinstaller 第二步 打包安装 pyinstaller Test.py 第三步 完成 找到打包目录下dist目录 ...
- tomcat更改端口号
apache-tomcat-8文件下的conf文件下的server.xml文件打开将 <Connector port="8080" protocol="HTT ...
- kafka producer生产数据到kafka异常:Got error produce response with correlation id 16 on topic-partition...Error: NETWORK_EXCEPTION
kafka producer生产数据到kafka异常:Got error produce response with correlation id 16 on topic-partition... ...
- O2O网站
编辑 020是新型的网络营销模式,O2O即Online To Offline,线下销售与服务通过线上推广来揽客,消费者可以通过线上来筛选需求,在线预订.结算,甚至可以灵活地进行线上预订,线下交易.消费 ...
- php 邓士鹏
// $is_company = $_groupid > 5 || ($_groupid == 4 && $user['regid'] > 5); $_E = ($MOD[ ...
- jQuery.fn的作用是什么
jQuery.fn的作用是什么:在自定义jQuery插件中,会经常见到jQuery.fn的身影,下面就简单介绍一下它的作用到底是什么.想要认识它的本质,最好的办法直接看jQuery的源码,否则一切都是 ...
- SDP(3):ScalikeJDBC- JDBC-Engine:Fetching
ScalikeJDBC在覆盖JDBC基本功能上是比较完整的,而且实现这些功能的方式比较简洁,运算效率方面自然会稍高一筹了.理论上用ScalikeJDBC作为一种JDBC-Engine还是比较理想的:让 ...