【prufer编码+组合数学】BZOJ1005 [HNOI2008]明明的烦恼
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?
Solution
这道题就是树的计数加强版,多了不要求的情况。
对于已限制的情况,就是C(n-2,t)*可重复元素的公式,考虑其他不限制的元素,再*(n-t)^(n-2-sum),t为已限制点个数,sum为已限制度数。
大概就是这个意思,计算要用分解质因数+高精度,具体细节自己推一推。
Code
因为是高精乘低精,高精度很好打。
1A十分感动,感觉最近打代码没以前那么无脑了。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=5e3+; int dy[maxn],pri[maxn],tot[maxn],cnt;
int a[maxn],d[maxn],n,t,len; int getpri(){
for(int i=;i<=n;i++){
if(!dy[i]) pri[++cnt]=i,dy[i]=cnt;
for(int j=;j<=cnt&&pri[j]*i<=n;j++){
dy[pri[j]*i]=j;
if(i%pri[j]==) break;
}
}
} int add(int x,int k){
while(x!=){
tot[dy[x]]+=k;
x/=pri[dy[x]];
}
} int mul(int x){
for(int i=;i<=len;i++) a[i]*=x;
for(int i=;i<=len;i++) if(a[i]>=){
if(i==len) len++;
a[i+]+=a[i]/;
a[i]%=;
}
} int main(){
int sum=;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&d[i]);
if(d[i]!=-) sum+=d[i]-;
}
if(sum>n-){
printf("0\n");
return ;
}
if(n==){
printf("1\n");
return ;
} for(int i=;i<=n;i++){
if(!d[i]){
printf("0\n");
return ;
}
if(d[i]!=-) t++;
} getpri();
for(int i=;i<=n-;i++) add(i,);
for(int i=;i<=n--sum;i++) add(n-t,);
for(int i=;i<=n--sum;i++) add(i,-);
for(int i=;i<=n;i++)
for(int j=;j<d[i];j++) add(j,-); len=a[]=;
for(int i=;i<=cnt;i++)
for(int j=;j<=tot[i];j++) mul(pri[i]); for(int i=len;i>=;i--)
printf("%d",a[i]);
return ;
}
【prufer编码+组合数学】BZOJ1005 [HNOI2008]明明的烦恼的更多相关文章
- bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)
1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...
- bzoj1005 [HNOI2008]明明的烦恼
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3032 Solved: 1209 Description ...
- [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度
Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...
- bzoj1005: [HNOI2008]明明的烦恼 prufer序列
https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...
- [BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...
- BZOJ1005:[HNOI2008]明明的烦恼(组合数学,Prufer)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...
- BZOJ1005 HNOI2008明明的烦恼(prufer+高精度)
每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘.记一下每个因子的贡献分解一下质因数高精度乘起来即可. #include<iostream&g ...
- [bzoj1005][HNOI2008][明明的烦恼] (高精度+prufer定理)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...
- [BZOJ1005][HNOI2008]明明的烦恼 数学+prufer序列+高精度
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int N; ...
随机推荐
- 手机访问pc地址时直接跳到移动端
function mobile_device_detect(url) { var thisOS = navigator.platform; var os = new Array("iPhon ...
- combination sum、permutation、subset(组合和、全排列、子集)
combination sum I.permutation I.subsets I 是组合和.全排列.子集的第一种情况,给定数组中没有重复的元素. combination sum II.permut ...
- 第四章:4.2MySQL 权限系统介绍
4.2.1 权限系统简介 MySQL 的权限系统在实现上比较简单,相关权限信息主要存储在几个被称为granttables 的系统表中,即: mysql.User,mysql.db,mysql.Host ...
- Access Treeview树节点代码一
Private Sub TreeView0_Updated(Code As Integer)Dim ndeindex As NodeSet ndeindex = TreeView0.Nodes.Add ...
- nginx简单安装设置
1.Nginx ("engine x") 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器.Nginx是由Igor Sysoev为俄罗斯访问量第二 ...
- 影响Sql server性能的因素
目前本人在看<SQL Server性能调优实战> ,以下内容是本人看书笔记 数据库性能取决于各方面综合因素: 硬件,操作系统,软件 硬件:内存,CPU,磁盘 当服务器的物理内存不足时,会产 ...
- JavaScript教程大纲
因为考虑到Python的接受难度,改为推广较为简单和流行的JavaScript.先列主要参考资料: JavaScript权威指南(第6版):http://book.douban.com ...
- Sec site list
Seclist: 英语: http://seclists.org/ http://www.securityfocus.com/ http://www.exploit-db.com/ http ...
- Scala编程入门---面向对象编程之Trait
Scala中Trait是一种特殊概念 首先我们可以将Triat做为接口来使用,此时的Triat就与java中的接口非常相似 在Triat中可以定义抽象方法,就与抽象类中的抽象方法一样,只要不给出具体的 ...
- linux配置https站点
配置https站点呢,那就需要https证书,证书从何而来,花钱买?no,no,no,阿里有免费的,只是比较难发现,下面就图文解说一下怎么买免费的阿里https证书 首先阿里云,登录,购买链接———— ...