【网络流24题】最长k可重线段集(费用流)

题面

Cogs的数据有问题

Loj

洛谷

题解

这道题和最长k可重区间集没有区别

只不过费用额外计算一下

但是,还是有一点要注意的地方

这里可以是一条垂直的直线

所以,首先把所有的x轴全部乘2

如果两个相等就把右端点+1

否则左端点+1

这样就可以解决垂直于x轴的问题了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 50000
#define MAXL 5000000
#define INF 1000000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w,fy;
}e[MAXL];
bool vis[MAX];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w,int fy)
{
e[cnt]=(Line){v,h[u],w,fy};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0,-fy};h[v]=cnt++;
}
int pe[MAX],pr[MAX],dis[MAX];
int S,T,Cost,n,m,Flow,opt=-1;
bool SPFA()
{
memset(dis,63,sizeof(dis));
queue<int> Q;
Q.push(S);dis[S]=0;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&dis[v]>dis[u]+e[i].fy)
{
dis[v]=dis[u]+e[i].fy;
pe[v]=i;pr[v]=u;
if(!vis[v])vis[v]=true,Q.push(v);
}
}
vis[u]=false;
}
if(dis[T]>=INF)return false;
int flow=INF;
for(int i=T;i!=S;i=pr[i])flow=min(flow,e[pe[i]].w);
for(int i=T;i!=S;i=pr[i])e[pe[i]].w-=flow,e[pe[i]^1].w+=flow;
Cost+=opt*flow*dis[T];
Flow+=flow;
return true;
}
int X1[MAX],X2[MAX],SS[MAX],tot,K,W[MAX];
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)
{
int x1=read(),y1=read(),x2=read(),y2=read();
int ww=sqrt(1ll*(x1-x2)*(x1-x2)+1ll*(y1-y2)*(y1-y2));
if(x1>x2)swap(x1,x2);
x1*=2;x2*=2;if(x1==x2)x2++;else x1++;
SS[++tot]=x1;SS[++tot]=x2;
X1[i]=x1,X2[i]=x2;W[i]=ww;
}
sort(&SS[1],&SS[tot+1]);
tot=unique(&SS[1],&SS[tot+1])-SS-1;
S=0;T=tot+1;
for(int i=0;i<=tot;++i)
Add(i,i+1,K,0);
for(int i=1;i<=n;++i)
{
int u=lower_bound(&SS[1],&SS[tot+1],X1[i])-SS;
int v=lower_bound(&SS[1],&SS[tot+1],X2[i])-SS;
Add(u,v,1,-W[i]);
}
while(SPFA());
printf("%d\n",Cost);
return 0;
}

【网络流24题】最长k可重线段集(费用流)的更多相关文章

  1. 网络流24题-最长k可重线段集问题

    最长k可重线段集问题 时空限制1000ms / 128MB 题目描述 给定平面 x−O−y 上 n 个开线段组成的集合 I,和一个正整数 k .试设计一个算法,从开线段集合 I 中选取出开线段集合 S ...

  2. [网络流24题]最长k可重线段集[题解]

    最长 \(k\) 可重线段集 题目大意 给定平面 \(x-O-y\) 上 \(n\) 个开线段组成的集合 \(I\) ,和一个正整数 \(k\) .试设计一个算法,从开线段集合 \(I\) 中选取开线 ...

  3. [网络流24题] 最长k可重线段集问题 (费用流)

    洛谷传送门 LOJ传送门 最长k可重区间集问题的加强版 大体思路都一样的,不再赘述,但有一些细节需要注意 首先,坐标有负数,而且需要开$longlong$算距离 但下面才是重点: 我们把问题放到了二维 ...

  4. COGS743. [网络流24题] 最长k可重区间集

    743. [网络流24题] 最长k可重区间集 ★★★   输入文件:interv.in   输出文件:interv.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: «编 ...

  5. [网络流24题]最长k可重区间集[题解]

    最长 \(k\) 可重区间集 题目大意 给定实心直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取开区间集 ...

  6. [网络流24题] 最长k可重区间集

    https://www.luogu.org/problemnew/show/3358 以区间(1,5),(2,6),(7,8)为例 建模方法一: 建模方法二: 离散化区间端点 相当于找k条费用最大的不 ...

  7. [网络流24题] 最长K可重区间集问题

    题目链接:戳我 当时刷24题的时候偷了懒,没有写完,结果落下这道题没有写qwq结果今天考试T3中就有一部分要用到这个思想,蒟蒻我硬是没有想到网络流呜呜呜 最大费用流. 就是我们考虑将问题转化一下,转化 ...

  8. [网络流24题] 最长k可重区间集问题 (费用流)

    洛谷传送门 LOJ传送门 很巧妙的建图啊...刚了$1h$也没想出来,最后看的题解 发现这道题并不类似于我们平时做的网络流题,它是在序列上的,且很难建出来二分图的形. 那就让它在序列上待着吧= = 对 ...

  9. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

随机推荐

  1. [Python Study Notes]字符串处理技巧(持续更新)

    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...

  2. .Net Core和jexus配置HTTPS服务

    花了几天时间,看了好多篇博客,终于搞定了网站的HTTPS服务,借此写篇博客,来让有需要的朋友少走弯路. 一.环境介绍 1.Linux下在Docker容器中部署好了一个网站,该网站需要通过外部提供程序访 ...

  3. Shiro的原理及Web搭建

    shiro(java安全框架) 以下都是综合之前的人加上自己的一些小总结 Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码学和会话管理.使用Shiro的易于理解的A ...

  4. [原创]CentOS7安装远程工具teamviewer12

    系统环境:CentOS 7.0.1 1.下载安装# wget https://dl.tvcdn.de/download/version_12x/teamviewer_12.0.85001.i686.r ...

  5. 在gitlab上面创建私有库

    一.创建私有库1.使用xcode建立新的工程,选择Cocoa Touch Static Library,取名为podTest   WechatIMG1172.jpeg 2.创建一个类PodTest,给 ...

  6. bzoj 3048[Usaco2013 Jan]Cow Lineup 思想,乱搞 stl

    3048: [Usaco2013 Jan]Cow Lineup Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 237  Solved: 168[Subm ...

  7. iOS 添加WKWebView导致控制器无法释放的问题

    在WkWebView与JavaScript交互中,经常会在原生中注入MessageHandler,app中注入MessageHandler的方法 WKWebViewConfiguration *con ...

  8. ubuntu上lamp环境搭建

    首先,介绍个彻底删除linux已经安装的软件的方法. sudo apt-get purge mysql-server mysql-client mysql-common mysql-server-5. ...

  9. Angular利用@ViewChild在父组件执行子组件的方法

    代码如下: @Component({ selector: 'my-app', template: ` <step-bar #stepBar></step-bar> ` }) e ...

  10. hdu 1010 回溯加奇偶性剪枝

    普通的剪枝会超时,必须加入奇偶性剪枝. 直接上图: AC代码: #include<cstdio> #include<cstring> #include<algorithm ...