Python----逻辑回归
逻辑回归
1、逻辑函数

sigmoid函数就出现了。这个函数的定义如下:
sigmoid函数具有我们需要的一切优美特性,其定义域在全体实数,值域在[0, 1]之间,并且在0点值为0.5。
那么,如何将f(x)转变为sigmoid函数呢?令p(x)=1为具有特征x的样本被分到类别1的概率,则p(x)/[1-p(x)]被定义为让步比(odds ratio)。引入对数:
上式很容易就能把p(x)解出来得到下式:
2、代码实例:
部分数据集:

#导入标注库
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd #导入数据
dataset = pd.read_csv('Data.csv')
X = dataset.iloc[:, [2,3]].values
y = dataset.iloc[:, 4].values #将导入的数据集分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) #特征缩放
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test) #训练集拟合逻辑回归的分类器
#从模型的标准库中导入逻辑分类的类
from sklearn.linear_model import LogisticRegression
#创建变量,初始分类器
classifier = LogisticRegression(random_state = 0)
#运用训练集拟合分类器
classifier.fit(X_train, y_train) #运用拟合好的分类器预测测试集的结果情况
#创建变量(包含预测出的结果)
y_pred = classifier.predict(X_test) #通过测试的结果评估分类器的性能
#用混淆矩阵,评估性能
#65,24对应着正确的预测个数;8,3对应错误预测个数;拟合好的分类器正确率:(65+24)/100
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred) #在图像看分类结果(训练集)
from matplotlib.colors import ListedColormap
#创建变量
X_set, y_set = X_train, y_train
#x1,x2对应图中的像素;最小值-1,最大值+1,-1和+1是为了让图的边缘留白,像素之间的距离0.01;第一行年龄,第二行年收入
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
#将不同像素点涂色,用拟合好的分类器预测每个点所属的分类并且根据分类值涂色
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
#标注最大值及最小值
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
#为了滑出实际观测的点(黄、蓝)
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('orange', 'blue'))(i), label = j)
plt.title('Logistic Regression (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
#显示不同的点对应的值
plt.legend()
#生成图像
plt.show() #在图像看分类结果(测试集)
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('orange', 'blue'))(i), label = j)
plt.title('Logistic Regression (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show() """
逻辑回归的模板:
导入标注库
导入数据
将导入的数据分成训练集、测试集
进行必要的特征缩放
创建分类器,并将训练集拟合分类器
分类器预测测试集样品的所属类别
得到预测的结果,创建混淆矩阵,评估分类器的性能
将分类结果通过图像直观展现,并且在图像上显示训练集和测试集的结果
"""
训练集图像显示结果:

测试集图像显示结果:

Python----逻辑回归的更多相关文章
- python逻辑回归 自动建模
#-*- coding: utf-8 -*- #逻辑回归 自动建模 import numpy as np import pandas as pd from sklearn.linear_model i ...
- 用Python开始机器学习(7:逻辑回归分类) --好!!
from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到 ...
- Python实现LR(逻辑回归)
Python实现LR(逻辑回归) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end o ...
- Python实践之(七)逻辑回归(Logistic Regression)
机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Pyth ...
- python实现随机森林、逻辑回归和朴素贝叶斯的新闻文本分类
实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb ...
- 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) z ...
- 逻辑回归--美国挑战者号飞船事故_同盾分数与多头借贷Python建模实战
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
- 转载:逻辑回归的python实现
转载自:http://blog.csdn.net/zouxy09/article/details/20319673 一.逻辑回归(LogisticRegression) Logistic regres ...
- (数据科学学习手札24)逻辑回归分类器原理详解&Python与R实现
一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们 ...
- 机器学习/逻辑回归(logistic regression)/--附python代码
个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(log ...
随机推荐
- 进行API开发选gRPC还是HTTP APIs?
上一篇文章我带着大家体验了一把<ASP.NET Core 3.0 上的gRPC服务模板初体验(多图)>,如果有兴趣的可以点击链接进行查看,相信跟着做的你,也是可以跑起来的.这篇文章我们将一 ...
- 解决关于:Oracle数据库 插入数据中文乱码 显示问号???
问题: oracle数据库,通过接口插入的中文数据乱码,中文变成了问号??? 解决方案: 计算机=>属性=>高级系统设置=>环境变量=>新建 变量名:NLS_LANG 值:SI ...
- BaiduSpeechDemo【百度语音SDK集成】(基于v3.0.8.1)
版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 上一篇集成的是V3.0.7.3版本的SDK<BaiduSpeechDemo[百度语音SDK集成](基于v3.0.7.3)> ...
- 用SpringCloud进行微服务架构演进
在<架构师必须要知道的阿里的中台战略与微服务> 中已经阐明选择SpringCloud进行微服务架构实现中台战略,因此下面介绍SpringCloud的一些内容,SpringCloud已经出来 ...
- [开源]基于Log4Net简单实现KafkaAppender
背景 基于之前基于Log4Net本地日志服务简单实现 实现本地日志服务,但是随着项目开发演进,本地日志服务满足不了需求,譬如在预发布环境或者生产环境,不可能让开发人员登录查看本地日志文件分析. Kaf ...
- 机器学习之决策树三-CART原理与代码实现
决策树系列三—CART原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9482885.html ID ...
- 【经典案例】Python详解设计模式:策略模式
完成一项任务往往有多种方式,我们将其称之为策略. 比如,超市做活动,如果你的购物积分满1000,就可以按兑换现金抵用券10元,如果购买同一商品满10件,就可以打9折,如果如果购买的金额超过500,就可 ...
- 如何發佈一個完整Node.js Module
本文會透過以下幾個段落,讓各位一步一步學習如何寫一個自已的Node.js Module並且發佈到npm package上 Node.js Module 結構 我們先建立一個 NodeModuleDem ...
- java的设计模式 - 单例模式
java 面试中单例模式基本都是必考的,都有最推荐的方式,也不知道问来干嘛.下面记录一下 饿汉式(也不知道为何叫这个名字) public class Singleton { private stati ...
- Flask实战第6天:视图函数Response返回值
视图函数的返回值会被自动转换为一个响应对象,Flask的转换逻辑如下: 如果返回的是一个合法的响应对象,则直接返回 可以使用make_response函数来创建Response对象,这个方法可以设置额 ...