逻辑回归

1、逻辑函数

sigmoid函数就出现了。这个函数的定义如下:

sigmoid函数具有我们需要的一切优美特性,其定义域在全体实数,值域在[0, 1]之间,并且在0点值为0.5。

那么,如何将f(x)转变为sigmoid函数呢?令p(x)=1为具有特征x的样本被分到类别1的概率,则p(x)/[1-p(x)]被定义为让步比(odds ratio)。引入对数:

上式很容易就能把p(x)解出来得到下式:

 2、代码实例:

  部分数据集:

  

#导入标注库
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd #导入数据
dataset = pd.read_csv('Data.csv')
X = dataset.iloc[:, [2,3]].values
y = dataset.iloc[:, 4].values #将导入的数据集分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) #特征缩放
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test) #训练集拟合逻辑回归的分类器
#从模型的标准库中导入逻辑分类的类
from sklearn.linear_model import LogisticRegression
#创建变量,初始分类器
classifier = LogisticRegression(random_state = 0)
#运用训练集拟合分类器
classifier.fit(X_train, y_train) #运用拟合好的分类器预测测试集的结果情况
#创建变量(包含预测出的结果)
y_pred = classifier.predict(X_test) #通过测试的结果评估分类器的性能
#用混淆矩阵,评估性能
#65,24对应着正确的预测个数;8,3对应错误预测个数;拟合好的分类器正确率:(65+24)/100
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred) #在图像看分类结果(训练集)
from matplotlib.colors import ListedColormap
#创建变量
X_set, y_set = X_train, y_train
#x1,x2对应图中的像素;最小值-1,最大值+1,-1和+1是为了让图的边缘留白,像素之间的距离0.01;第一行年龄,第二行年收入
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
#将不同像素点涂色,用拟合好的分类器预测每个点所属的分类并且根据分类值涂色
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
#标注最大值及最小值
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
#为了滑出实际观测的点(黄、蓝)
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('orange', 'blue'))(i), label = j)
plt.title('Logistic Regression (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
#显示不同的点对应的值
plt.legend()
#生成图像
plt.show() #在图像看分类结果(测试集)
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('orange', 'blue'))(i), label = j)
plt.title('Logistic Regression (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show() """
逻辑回归的模板:
导入标注库
导入数据
将导入的数据分成训练集、测试集
进行必要的特征缩放
创建分类器,并将训练集拟合分类器
分类器预测测试集样品的所属类别
得到预测的结果,创建混淆矩阵,评估分类器的性能
将分类结果通过图像直观展现,并且在图像上显示训练集和测试集的结果
"""

  训练集图像显示结果:

     

    测试集图像显示结果:

      

Python----逻辑回归的更多相关文章

  1. python逻辑回归 自动建模

    #-*- coding: utf-8 -*- #逻辑回归 自动建模 import numpy as np import pandas as pd from sklearn.linear_model i ...

  2. 用Python开始机器学习(7:逻辑回归分类) --好!!

    from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到 ...

  3. Python实现LR(逻辑回归)

    Python实现LR(逻辑回归) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end o ...

  4. Python实践之(七)逻辑回归(Logistic Regression)

    机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Pyth ...

  5. python实现随机森林、逻辑回归和朴素贝叶斯的新闻文本分类

    实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb ...

  6. 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)

    http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) z ...

  7. 逻辑回归--美国挑战者号飞船事故_同盾分数与多头借贷Python建模实战

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  8. 转载:逻辑回归的python实现

    转载自:http://blog.csdn.net/zouxy09/article/details/20319673 一.逻辑回归(LogisticRegression) Logistic regres ...

  9. (数据科学学习手札24)逻辑回归分类器原理详解&Python与R实现

    一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们 ...

  10. 机器学习/逻辑回归(logistic regression)/--附python代码

    个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(log ...

随机推荐

  1. 【机器学习】--鲁棒性调优之L1正则,L2正则

    一.前述 鲁棒性调优就是让模型有更好的泛化能力和推广力. 二.具体原理 1.背景 第一个更好,因为当把测试集带入到这个模型里去.如果测试集本来是100,带入的时候变成101,则第二个模型结果偏差很大, ...

  2. PyCharm:选择性忽略 PEP8 警告

    PyCharm 是个很强大的 python IDE,PEP 8 的告警提示也很好用,但是函数名不能包含大写字母等少数几个规范真心觉得不好,作为一名处女座强迫症患者,代码下面的波浪线这种东西是绝对不允许 ...

  3. Python实战171202元组访问

    学生信息系统中数据为固定格式: (名字,年龄,性别,邮箱地址,......) 学生数量很大为了减小存储开销,对每个学生信息用元组表示: ('jim',18,'male','jim8765@gmail. ...

  4. 【憩园】C#并发编程之异步编程(二)

    写在前面 前面一篇文章介绍了异步编程的基本内容,同时也简要说明了async和await的一些用法.本篇文章将对async和await这两个关键字进行深入探讨,研究其中的运行机制,实现编码效率与运行效率 ...

  5. 大数据时代的图表可视化利器——highcharts,D3和百度的echarts

    大数据时代的图表可视化利器——highcharts,D3和百度的echarts https://blog.csdn.net/minidrupal/article/details/42153941   ...

  6. c#下载文件选择路径控件

    <input id="file1" style="width: 240px; height: 20px; display:none;" type=&quo ...

  7. Innosetup 设置文件的相对路径

    在使用innosetup自动化打包的过程中,如果打包配置文件要随代码一起提交,则需要将打包文件改为相对路径,以便在其它端也可以直接打包,而不需要再次修改文件路径参数. 添加自动化打包文件 1. 添加b ...

  8. C# WebRequest.Create 锚点“#”字符问题

    背景 在与后台API接口对接时,如将网页Url作为参数请求数据时,如果是锚点参数,则会丢失. 锚点参数 请求通过WebRequest.Create创建一个WebRequest: var uri = & ...

  9. 命令模式 Command 行为型 设计模式(十八)

    命令模式(Command) 请分析上图中这条命令的涉及到的角色以及执行过程,一种可能的理解方式是这样子的: 涉及角色为:大狗子和大狗子他妈 过程为:大狗子他妈角色 调用 大狗子的“回家吃饭”方法 引子 ...

  10. 移动开发基础-学习笔记二-字体图标、less、bootstrap入门

    1.字体图标 1.字体图标都是用svg图片 1.svg图片不失真 2.svg图标由设计师提供 3.为了减少网络请求,会把svg图标转换成字体图标,放到字体文件中,通过字体库的方式使用 2.制作步骤 1 ...