●hihocoder #1394 网络流四·最小路径覆盖
题链:
http://hihocoder.com/problemset/problem/1394
题解:
有向图最小路径覆盖:最少的路径条数不重不漏的覆盖所有点。
注意到在任意一个最小路径覆盖的方案下,
每条路径的起点的入度为 0,终点的出度为 0,而中间的点的入度和出度以及起点的出度和终点的入度都为 1
那么把每个点拆为两个: u 和 u',分别代表其 出点 和 入点
然后对于 边 u->v, 在 u 和 v' 之间建立双向边。
那么形成二分图。
二分图匹配后,某条匹配边上的起点的出度 +1,终点的入度 +1,
那么没有被匹配到的 u'则是某条路径的起点(即没有入度),
那么没有被匹配到的 u 则是某条路径的终点(即没有出度),
正好二分图最大匹配后,没有被匹配的u'(或u)的个数是最少的,则表明路径是最少的(起点或终点是最少的)。
又因为 没有被匹配的 u'的数量 == 点数N - 匹配数
所以,有向图最小路径覆盖 =点数 -二分图最大匹配数
(更加详细的图文讲解,非常不错的 http://blog.csdn.net/tramp_1/article/details/52742572)
二分图匹配可以用匈牙利,也可以用最大流来做。
代码:
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 1500
#define MAXM 50000
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int to[MAXM],cap[MAXM],nxt[MAXM],head[MAXN],ent;
void Init(){ent=2;}
void Adde(int u,int v,int w){
to[ent]=v; cap[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
to[ent]=u; cap[ent]=0; nxt[ent]=head[v]; head[v]=ent++;
}
int Next(int i,bool type){
return type?head[i]:nxt[i];
}
}E;
int cur[MAXN],d[MAXN];
int N,M,S,T;
int idx(int i,int k){
return i+k*N;
}
bool bfs(){
queue<int>q; int u,v;
memset(d,0,sizeof(d));
d[S]=1; q.push(S);
while(!q.empty()){
u=q.front(); q.pop();
for(int i=E.Next(u,1);i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]||!E.cap[i]) continue;
d[v]=d[u]+1; q.push(v);
}
}
return d[T];
}
int dfs(int u,int reflow){
if(u==T||!reflow) return reflow;
int flowout=0,f,v;
for(int &i=cur[u];i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]!=d[u]+1) continue;
f=dfs(v,min(reflow,E.cap[i]));
flowout+=f; E.cap[i^1]+=f;
reflow-=f; E.cap[i]-=f;
if(!reflow) break;
}
if(!flowout) d[u]=0;
return flowout;
}
int Dinic(){
int flow=0;
while(bfs()){
memcpy(cur,E.head,sizeof(E.head));
flow+=dfs(S,INF);
}
return flow;
}
int main()
{
E.Init();
scanf("%d%d",&N,&M);
S=N*2+1; T=N*2+2;
for(int i=1,u,v;i<=M;i++){
scanf("%d%d",&u,&v);
E.Adde(idx(u,0),idx(v,1),1);
}
for(int i=1;i<=N;i++){
E.Adde(S,idx(i,0),1);
E.Adde(idx(i,1),T,1);
}
int match=Dinic();
printf("%d",N-match);
return 0;
}
●hihocoder #1394 网络流四·最小路径覆盖的更多相关文章
- hihocoder #1394 : 网络流四·最小路径覆盖(最小路径覆盖)
#1394 : 网络流四·最小路径覆盖 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 国庆期间正是旅游和游玩的高峰期. 小Hi和小Ho的学习小组为了研究课题,决定趁此机 ...
- hihoCoder 1394 : 网络流四·最小路径覆盖
题目链接:https://hihocoder.com/problemset/problem/1394 题目说是网络流,但是其实就是求有向无环图的最小路径覆盖. 不会网络流,只好用二分匹配了. 把每个点 ...
- hiho 第118周 网络流四·最小路径覆盖
描述 国庆期间正是旅游和游玩的高峰期. 小Hi和小Ho的学习小组为了研究课题,决定趁此机会派出若干个调查团去沿途查看一下H市内各个景点的游客情况. H市一共有N个旅游景点(编号1..N),由M条单向游 ...
- hihoCoder 网络流四·最小路径覆盖
题面带解释 hihoCoder感觉很好. 网络流的精华就是建图 #include<cstdio> #include<iostream> #include<algorith ...
- [HihoCoder1394]网络流四·最小路径覆盖
题目大意:从有向无环图中选出若干点不想交的链,使得这些链覆盖所有的点,并且链的条数最小. 思路:设超级源点$S$.超级汇点$T$.将$N$个点复制一份,分为$A$部和$B$部.对于$A$部的所有点$A ...
- 网络流二十四题之P2764 最小路径覆盖问题
题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...
- 【网络流24题】 No.3 最小路径覆盖问题 (网络流|匈牙利算法 ->最大二分匹配)
[题意] 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交) 的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 G 的一个路径覆盖. P 中路径可以从 V 的任何一 ...
- LOJ6002 - 「网络流 24 题」最小路径覆盖
原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...
- LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖
6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
随机推荐
- 和为S的连续正数序列——牛客网(剑指offer)
题目描述 小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100.但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数).没多久,他 ...
- 构建微服务开发环境4————安装Docker及下载常用镜像
[内容指引] 下载Docker: Mac下安装Docker: Windows下安装Docker; 下载常用docker镜像. 一.下载Docker 1.Mac适用Docker下载地址:https:// ...
- nyoj 公约数和公倍数
公约数和公倍数 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描述 小明被一个问题给难住了,现在需要你帮帮忙.问题是:给出两个正整数,求出它们的最大公约数和最小公倍数. ...
- php后台的在控制器中就可以实现阅读数增加
$smodel=M('Sswz');$smodel->where($map)->setInc('view' ,1);php后台的在控制器中就可以实现阅读数增加前台不需要传值
- 新概念英语(1-133)Sensational news!
Lesson 133 Sensational news! 爆炸性新闻! Listen to the tape then answer this question. What reason did Ka ...
- Linux知识积累 (9) 创建用户、分配权限和更改所有者
一.useradd和adduser 1.useradd命令: 用于Linux中创建的新的系统用户. useradd可用来建立用户帐号.帐号建好之后,再用passwd设定帐号的密码. 而可用userde ...
- 写给 Android 应用工程师的 Binder 原理剖析
写给 Android 应用工程师的 Binder 原理剖析 一. 前言 这篇文章我酝酿了很久,参考了很多资料,读了很多源码,却依旧不敢下笔.生怕自己理解上还有偏差,对大家造成误解,贻笑大方.又怕自己理 ...
- Windows10+Docker搭建分布式Redis集群(SSH服务镜像)(二)
前言:上篇文章我们搭建好了Docker,下面我们开始使用Docker创建镜像,Docker命令就不介绍了.这里宿主是Windows10,cmd的管理和后期文件的复制不是很方便,将创建支持SSH的Cen ...
- 【笔记】快应用QuickApp(hap) -- 构建一个微博应用
一.背景 在上次和小伙伴分享了快应用(后面简称hap)后,有很多待定的思路没有去尝试.这周有时间简单开发了一个热门微博的应用,主要涉及到的难点:富文本.长列表.画廊.这里将整个开发过程中遇到的问题以及 ...
- 处理异常、常用类、反射、类加载与垃圾回收、java集合框架
异常处理概述 检查异常:检查异常通常是用户错误或者不能被程序员所预见的问题.(cheched) 运行时异常:运行时异常是一个程序在运行过程中可能发生的.可以被程序员避免的异常类型.(Unchecked ...