题链:

http://hihocoder.com/problemset/problem/1394

题解:

有向图最小路径覆盖:最少的路径条数不重不漏的覆盖所有点。

注意到在任意一个最小路径覆盖的方案下,
每条路径的起点的入度为 0,终点的出度为 0,而中间的点的入度和出度以及起点的出度和终点的入度都为 1
那么把每个点拆为两个: u 和 u',分别代表其 出点 和 入点
然后对于 边 u->v, 在 u 和 v' 之间建立双向边。
那么形成二分图。
二分图匹配后,某条匹配边上的起点的出度 +1,终点的入度 +1,
那么没有被匹配到的 u'则是某条路径的起点(即没有入度),
那么没有被匹配到的 u 则是某条路径的终点(即没有出度),

正好二分图最大匹配后,没有被匹配的u'(或u)的个数是最少的,则表明路径是最少的(起点或终点是最少的)。
又因为 没有被匹配的 u'的数量 == 点数N - 匹配数

所以,有向图最小路径覆盖 =点数 -二分图最大匹配数

(更加详细的图文讲解,非常不错的 http://blog.csdn.net/tramp_1/article/details/52742572)

二分图匹配可以用匈牙利,也可以用最大流来做。

代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 1500
#define MAXM 50000
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int to[MAXM],cap[MAXM],nxt[MAXM],head[MAXN],ent;
void Init(){ent=2;}
void Adde(int u,int v,int w){
to[ent]=v; cap[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
to[ent]=u; cap[ent]=0; nxt[ent]=head[v]; head[v]=ent++;
}
int Next(int i,bool type){
return type?head[i]:nxt[i];
}
}E;
int cur[MAXN],d[MAXN];
int N,M,S,T;
int idx(int i,int k){
return i+k*N;
}
bool bfs(){
queue<int>q; int u,v;
memset(d,0,sizeof(d));
d[S]=1; q.push(S);
while(!q.empty()){
u=q.front(); q.pop();
for(int i=E.Next(u,1);i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]||!E.cap[i]) continue;
d[v]=d[u]+1; q.push(v);
}
}
return d[T];
}
int dfs(int u,int reflow){
if(u==T||!reflow) return reflow;
int flowout=0,f,v;
for(int &i=cur[u];i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]!=d[u]+1) continue;
f=dfs(v,min(reflow,E.cap[i]));
flowout+=f; E.cap[i^1]+=f;
reflow-=f; E.cap[i]-=f;
if(!reflow) break;
}
if(!flowout) d[u]=0;
return flowout;
}
int Dinic(){
int flow=0;
while(bfs()){
memcpy(cur,E.head,sizeof(E.head));
flow+=dfs(S,INF);
}
return flow;
}
int main()
{
E.Init();
scanf("%d%d",&N,&M);
S=N*2+1; T=N*2+2;
for(int i=1,u,v;i<=M;i++){
scanf("%d%d",&u,&v);
E.Adde(idx(u,0),idx(v,1),1);
}
for(int i=1;i<=N;i++){
E.Adde(S,idx(i,0),1);
E.Adde(idx(i,1),T,1);
}
int match=Dinic();
printf("%d",N-match);
return 0;
}

●hihocoder #1394 网络流四·最小路径覆盖的更多相关文章

  1. hihocoder #1394 : 网络流四·最小路径覆盖(最小路径覆盖)

    #1394 : 网络流四·最小路径覆盖 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 国庆期间正是旅游和游玩的高峰期. 小Hi和小Ho的学习小组为了研究课题,决定趁此机 ...

  2. hihoCoder 1394 : 网络流四·最小路径覆盖

    题目链接:https://hihocoder.com/problemset/problem/1394 题目说是网络流,但是其实就是求有向无环图的最小路径覆盖. 不会网络流,只好用二分匹配了. 把每个点 ...

  3. hiho 第118周 网络流四·最小路径覆盖

    描述 国庆期间正是旅游和游玩的高峰期. 小Hi和小Ho的学习小组为了研究课题,决定趁此机会派出若干个调查团去沿途查看一下H市内各个景点的游客情况. H市一共有N个旅游景点(编号1..N),由M条单向游 ...

  4. hihoCoder 网络流四·最小路径覆盖

    题面带解释 hihoCoder感觉很好. 网络流的精华就是建图 #include<cstdio> #include<iostream> #include<algorith ...

  5. [HihoCoder1394]网络流四·最小路径覆盖

    题目大意:从有向无环图中选出若干点不想交的链,使得这些链覆盖所有的点,并且链的条数最小. 思路:设超级源点$S$.超级汇点$T$.将$N$个点复制一份,分为$A$部和$B$部.对于$A$部的所有点$A ...

  6. 网络流二十四题之P2764 最小路径覆盖问题

    题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...

  7. 【网络流24题】 No.3 最小路径覆盖问题 (网络流|匈牙利算法 ->最大二分匹配)

    [题意] 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交) 的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 G 的一个路径覆盖. P 中路径可以从 V 的任何一 ...

  8. LOJ6002 - 「网络流 24 题」最小路径覆盖

    原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...

  9. LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖

    6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

随机推荐

  1. 从0开始的LeetCode生活—001-Two Sum

    题目: Given an array of integers, return indices of the two numbers such that they add up to a specifi ...

  2. Python strip()方法

    描述 Python strip() 方法用于移除字符串头尾指定的字符(默认为空格). 语法 strip()方法语法: str.strip([chars]); 参数 chars -- 移除字符串头尾指定 ...

  3. Python randrange() 函数

    Python randrange() 函数  Python 数字 描述 randrange() 方法返回指定递增基数集合中的一个随机数,基数缺省值为1. 语法 以下是 randrange() 方法的语 ...

  4. MySQL 服务安装及命令使用

    MySQL 服务安装及命令使用 课程来源说明 本节实验后续至第17节实验为本课程的进阶篇,都基于 MySQL 官方参考手册制作,并根据实验楼环境进行测试调整改编.在此感谢 MySQL 的开发者,官方文 ...

  5. webView调用系统地图,电话,和跳转链接的方法

    webView.dataDetectorTypes = UIDataDetectorTypePhoneNumber | UIDataDetectorTypeLink | UIDataDetectorT ...

  6. MySQL-压缩版-windows安装

    1.首先去dev.mysql.com/downloads/mysql/下载MySQL的压缩包,然后解压到任意盘符下. 2.打开系统变量在Path下追加mysql的路径(例如:C:\mysql-5.7. ...

  7. 【bug清除】新Surface Pro使用OneNote出现毛刺现象的解决方案

    在写字的时候,左手触摸Surface的金属外壳背面,大概两个手指指肚大小.问题亲测可以得到解决. 推测是设备使用时接地没有做好,导致电磁笔出现偏移.问题初步锁定在新笔的倾斜感应上. 参考资料: htt ...

  8. 怎么用DreamWare新建立一个静态网站的站点

    可以上面的图可以看出首先需要用F8确定这个文件是勾选的,然后在D盘建立"华为"文件夹,然后在里面建js,css,image文件夹,然后在DW里面点击站点 然后点击管理站点,有一个新 ...

  9. Formdata 图片上传 Ajax

    /*图片上传*/ $("点击对象").bind("click", function(e){ $('#form-upload').remove(); $('bod ...

  10. Mac 中配置Apache

    使用的mac版本是10.10.1,mac自带的Apache环境 分为两部分: 1.启动Apache 2.设置虚拟主机 启动Apache 打开终端, >>sudo apachectl -v, ...