题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3566
题解:

概率dp,树形dp
如果求出每个点被通电的概率t,
那么期望答案就是t1×1+t2×1+t3*1+...+tn×1
现在问题就是要去求每个点被通电的概率。
因为是一颗树,所以每个点是否通电只由三个因素决定:
自己给自己通电;儿子给自己通电;父亲给自己通电。
这里采取求反面的方法:
对于每个点u,
1.求出u所在的子树不能给u点通电的概率f[u]。
2.求出u的父亲不能给u点通电的概率g[u]。
那么最终,每个点可以被通电的概率就是1-f[u]*g[u].
对于f[u]的求法:
dfs这颗树,用儿子v去更新父亲节点u:
$$f[u]=(1-q[u])\times \prod_{u->v:p(边的概率为p)}(f[v]+(1-f[v])*(1-p))$$
对于g[u]的求法:
同样的dfs这颗树,用父亲u去更新儿子节点v
先求出除了v之外,其他的点使得u通电的概率:t=f[u]*g[u]/(f[v]+(1-f[v])*(1-p));
(就是除掉儿子对父亲的贡献,注意(f[v]+(1-f[v])*(1-p))等于0的情况)
然后$$g[v]=t+(1-t)\times (1-p)$$

然后计算答案即可。

代码:

#include<bits/stdc++.h>
#define MAXN 500005
using namespace std;
const double eps=1e-9;
int dcmp(double x){
if(fabs(x)<eps) return 0;
return x>0?1:0;
}
struct Edge{
int ent; double p[MAXN*2];
int to[MAXN*2],nxt[MAXN*2],head[MAXN];
Edge(){ent=2;}
void Adde(int u,int v,int w){
to[ent]=v; p[ent]=1.0*w/100;
nxt[ent]=head[u]; head[u]=ent++;
}
}E;
double f[MAXN],g[MAXN],q[MAXN],ANS;
int N;
void dfs1(int u,int dad){
f[u]=(1-q[u]);
for(int e=E.head[u];e;e=E.nxt[e]){
int v=E.to[e]; if(v==dad) continue;
dfs1(v,u);
f[u]*=(f[v]+(1-f[v])*(1-E.p[e]));
}
}
void dfs2(int u,int dad){
double t;
for(int e=E.head[u];e;e=E.nxt[e]){
int v=E.to[e]; if(v==dad) continue;
if(dcmp(f[v]+(1-f[v])*(1-E.p[e]))!=0)
t=f[u]*g[u]/(f[v]+(1-f[v])*(1-E.p[e]));
else t=0;
g[v]=t+(1-t)*(1-E.p[e]);
dfs2(v,u);
}
}
int main(){
ios::sync_with_stdio(0);
cin>>N;
for(int i=1,a,b,c;i<N;i++)
cin>>a>>b>>c,E.Adde(a,b,c),E.Adde(b,a,c);
for(int i=1;i<=N;i++)
cin>>q[i],q[i]/=100;
g[1]=1;
dfs1(1,0);
dfs2(1,0);
for(int i=1;i<=N;i++)
ANS+=1-f[i]*g[i];
cout<<fixed<<setprecision(6)<<ANS<<endl;
return 0;
}

  

●BZOJ 3566 [SHOI2014]概率充电器的更多相关文章

  1. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  2. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  3. bzoj 3566: [SHOI2014]概率充电器

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...

  4. BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)

    BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...

  5. bzoj 3566 [SHOI2014]概率充电器——树型

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3566 一眼看上去高斯消元.n^3不行. 竟然直接去看了TJ.发现树型dp.一下想到了自己还没 ...

  6. bzoj 3566: [SHOI2014]概率充电器【树形概率dp】

    设g[u]为这个点被儿子和自己充上电的概率,f[u]为被儿子.父亲和自己充上电的概率 然后根据贝叶斯公式(好像是叫这个),1.P(A+B)=P(A)+P(B)-P(A)*P(B),2.P(A)=(P( ...

  7. bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp

    题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...

  8. BZOJ 3566 [SHOI2014]概率充电器 ——期望DP

    期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...

  9. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

随机推荐

  1. 关于GPUImage的导入

    对于GPUImage的使用方面,GitHub上已经非常详细了,就不一一赘述了,但是对于项目的导入来说,最好的方式是 1.下载GPUImage并解压 2.打开压缩包后如图 3.打开终端,cd到此目录 4 ...

  2. 释义Oracle 11r2中并行执行相关参数

    因最近对现场某些服务器进行诊断和调整,用到了这类参数,因此对这类参数做了详尽的查阅和研究,现将该类参数释义如下,以方便同行和自己参考,禁止转载: 1.PARALLEL_ADAPTIVE_MULTI_U ...

  3. 新概念英语(1-9)How is Ema?

    A:Hello Helen. B:Hi Steven. A:How are you today? B:I'm very well, thank you. And you? A:I'm fine tha ...

  4. SpringBoot的注解:@SpringBootApplication注解 vs @EnableAutoConfiguration+@ComponentScan+@Configuration

    spring Boot开发者经常使用@Configuration,@EnableAutoConfiguration,@ComponentScan注解他们的main类, 由于这些注解如此频繁地一块使用( ...

  5. OAuth2.0学习(1-11)新浪开放平台微博认证-使用OAuth2.0调用微博的开放API

    使用OAuth2.0调用API 使用OAuth2.0调用API接口有两种方式: 1. 直接使用参数,传递参数名为 access_token URL 1 https://api.weibo.com/2/ ...

  6. Bootstrap 做一个简单的母版页

    随便搭的一个母版页,不太好看,只是为了看效果....请勿吐槽. 效果如图: 一.新建母版页,引入Bootstrap相关js文件 <link href="../css/bootstrap ...

  7. C# 客户端程序调用外部程序的三种实现

    简介 我们用C#来开发客户端程序的时候,总会不可避免的需要调用外部程序或者访问网站,本篇博客介绍了三种调用外部应用的方法,供参考 实现 第一种是利用shell32.dll,实现ShellExecute ...

  8. Django(博客系统):基于pycharm如何一个django工程下创建多个app

    背景:通常我们创建一个django系统时,为了把业务模块划分清楚往往会把一个独立的业务模块放到一个app中,如果多个独立的业务模块就会创建多个app,一般情况下为了更好的管理这些app,会把他们都存放 ...

  9. C++ 多态的实现及原理

    C++的多态性用一句话概括就是:在基类的函数前加上virtual关键字,在派生类中重写该函数,运行时将会根据对象的实际类型来调用相应的函数.如果对象类型是派生类,就调用派生类的函数:如果对象类型是基类 ...

  10. Collection集合框架详解

    [Java的集合框架] 接口: collection      map list     set 实现类: ArryList   HashSet HashMap LinkList   LinkHash ...