题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3566
题解:

概率dp,树形dp
如果求出每个点被通电的概率t,
那么期望答案就是t1×1+t2×1+t3*1+...+tn×1
现在问题就是要去求每个点被通电的概率。
因为是一颗树,所以每个点是否通电只由三个因素决定:
自己给自己通电;儿子给自己通电;父亲给自己通电。
这里采取求反面的方法:
对于每个点u,
1.求出u所在的子树不能给u点通电的概率f[u]。
2.求出u的父亲不能给u点通电的概率g[u]。
那么最终,每个点可以被通电的概率就是1-f[u]*g[u].
对于f[u]的求法:
dfs这颗树,用儿子v去更新父亲节点u:
$$f[u]=(1-q[u])\times \prod_{u->v:p(边的概率为p)}(f[v]+(1-f[v])*(1-p))$$
对于g[u]的求法:
同样的dfs这颗树,用父亲u去更新儿子节点v
先求出除了v之外,其他的点使得u通电的概率:t=f[u]*g[u]/(f[v]+(1-f[v])*(1-p));
(就是除掉儿子对父亲的贡献,注意(f[v]+(1-f[v])*(1-p))等于0的情况)
然后$$g[v]=t+(1-t)\times (1-p)$$

然后计算答案即可。

代码:

#include<bits/stdc++.h>
#define MAXN 500005
using namespace std;
const double eps=1e-9;
int dcmp(double x){
if(fabs(x)<eps) return 0;
return x>0?1:0;
}
struct Edge{
int ent; double p[MAXN*2];
int to[MAXN*2],nxt[MAXN*2],head[MAXN];
Edge(){ent=2;}
void Adde(int u,int v,int w){
to[ent]=v; p[ent]=1.0*w/100;
nxt[ent]=head[u]; head[u]=ent++;
}
}E;
double f[MAXN],g[MAXN],q[MAXN],ANS;
int N;
void dfs1(int u,int dad){
f[u]=(1-q[u]);
for(int e=E.head[u];e;e=E.nxt[e]){
int v=E.to[e]; if(v==dad) continue;
dfs1(v,u);
f[u]*=(f[v]+(1-f[v])*(1-E.p[e]));
}
}
void dfs2(int u,int dad){
double t;
for(int e=E.head[u];e;e=E.nxt[e]){
int v=E.to[e]; if(v==dad) continue;
if(dcmp(f[v]+(1-f[v])*(1-E.p[e]))!=0)
t=f[u]*g[u]/(f[v]+(1-f[v])*(1-E.p[e]));
else t=0;
g[v]=t+(1-t)*(1-E.p[e]);
dfs2(v,u);
}
}
int main(){
ios::sync_with_stdio(0);
cin>>N;
for(int i=1,a,b,c;i<N;i++)
cin>>a>>b>>c,E.Adde(a,b,c),E.Adde(b,a,c);
for(int i=1;i<=N;i++)
cin>>q[i],q[i]/=100;
g[1]=1;
dfs1(1,0);
dfs2(1,0);
for(int i=1;i<=N;i++)
ANS+=1-f[i]*g[i];
cout<<fixed<<setprecision(6)<<ANS<<endl;
return 0;
}

  

●BZOJ 3566 [SHOI2014]概率充电器的更多相关文章

  1. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  2. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  3. bzoj 3566: [SHOI2014]概率充电器

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...

  4. BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)

    BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...

  5. bzoj 3566 [SHOI2014]概率充电器——树型

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3566 一眼看上去高斯消元.n^3不行. 竟然直接去看了TJ.发现树型dp.一下想到了自己还没 ...

  6. bzoj 3566: [SHOI2014]概率充电器【树形概率dp】

    设g[u]为这个点被儿子和自己充上电的概率,f[u]为被儿子.父亲和自己充上电的概率 然后根据贝叶斯公式(好像是叫这个),1.P(A+B)=P(A)+P(B)-P(A)*P(B),2.P(A)=(P( ...

  7. bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp

    题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...

  8. BZOJ 3566 [SHOI2014]概率充电器 ——期望DP

    期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...

  9. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

随机推荐

  1. mongodb 高级操作

    聚合 aggregate 聚合(aggregate)主要用于计算数据,类似sql中的sum().avg() 语法 db.集合名称.aggregate([{管道:{表达式}}]) 管道 管道在Unix和 ...

  2. EMC CX4-480服务器raid磁盘数据恢复案例

    [用户信息]上海某公司 [故障描述]需要进行数据恢复的设备是一台EMC CX4的存储服务器,因为硬盘出现故障导致整个存储阵列瘫痪.整个LUN是由7块1TB的硬盘组成的RAID 5.但服务器共有10块硬 ...

  3. HTML5 canvas绘制雪花飘落

    Canvas是HTML5新增的组件,它就像一块幕布,可以用JavaScript在上面绘制各种图表.动画等. 没有Canvas的年代,绘图只能借助Flash插件实现,页面不得不用JavaScript和F ...

  4. js 从一个函数中传递值到另一个函数

    一个函数的调用大家都会用 我今天在调接口的时候突然发现需要引用个另一个函数中拿到的值 举个栗子 刚开始 我是这样调用的 alert弹出的是 hello world . 但是我a函数内部还有一个函数 画 ...

  5. Connect Appium Server Fail.A new session could not be created

    1.由于安卓测试机性能低下,并不能支持测试工作,想安装一个模拟器帮助测试,然后发现群里有朋友发了一个夜神模拟器..下载..安装..美滋滋的准备运行脚本.What..居然报错了..orz..然后百度查找 ...

  6. EasyUI DataGrid 实现单行/多行编辑功能

    要实现 EasyUI DataGrid 的可编辑很简单,在需要编辑的列添加 editor [编辑器]就可以了. 单行编辑 // 初始化数据列表 function initDatagrid() { $( ...

  7. SQL Server 实现类似C#中 PadLeft功能

    USE [Test] GO SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO --@column 表示字段或者常量,@paddingChar 表示 补位 ...

  8. "双非"应届生校招如何获得大厂青睐?(内附技术岗超全求职攻略)

    写在前面的话 笔者从17年的2月份开始准备春招,其中遇到不少坑,也意识到自己走过的弯路.故写了这篇文章总结一番,本文适合主动学习的,对自己要学的课程不明确的,对面试有恐惧症的...等将来打算从事技术岗 ...

  9. 自动化服务部署(一):Linux下安装JDK

    自动化测试的主要目的是为了执行回归测试.当然,为了模拟真实的用户操作,一般都是在UAT或者生产环境进行回归测试. 为了尽量避免内网和外网解析对测试结果的影响,将自动化测试服务部署在外网的服务器是比较好 ...

  10. Python-字典、集合、字符编码、文件操作整理-Day3

    1.字典 1.1.为什么有字典: 有个需求,存所有人的信息 这时候列表就不能轻易的表示完全names = ['stone','liang'] 1.2.元组: 定义符号()t = (1,2,3)tupl ...