bzoj 3277: 串
Description
字符串是oi界常考的问题。现在给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中
至少k个字符串的子串(注意包括本身)。
Solution
出现 \(k\) 次的问题比较好解决,我们构出 \(parent\) 树,然后在上面转移就可以了
但是在一个串出现多次只算一次,所以我们用 \(set\) 转移,自动去重
然后就是统计每一个串的每一个子串了
我们要在后缀自动机上遍历出所有 \(S\) 的子串
那么我们遍历每一个后缀节点,如果没有限制的话,对于所有遍历到的节点 \(x\),答案就是 \(\sum_{x} len[x]\)
对于限制,如果不满足 \(size[x]>=k\) ,我们暴力跳父亲节点,直到满足条件位置,然后继续做就行了
也可以不这么做:
我们把满足 \(size[x]>=k\) 的节点赋值为 \(len[x]-len[fa[x]]\),不满足的赋为 \(0\),然后把父亲的权值累加,直接访问每一个串的每一个位置所代表的节点,再累加起来就行了
关于 \(set\) 合并的复杂度问题:仿佛是个wei的
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e5+10;
int n,K,ch[N][26],fa[N];string s[N];
int cur,cnt=1,len[N],sz[N];set<int>S[N];set<int>::iterator it;
int head[N],nxt[N*2],to[N*2],num=0;
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
inline void dfs(int x){
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
dfs(u);
for(it=S[u].begin();it!=S[u].end();++it)S[x].insert(*it);
set<int>().swap(S[u]);
}
sz[x]=S[x].size();
}
inline void ins(int c,int id){
int p=cur;cur=++cnt;len[cur]=len[p]+1;
for(;p && !ch[p][c];p=fa[p])ch[p][c]=cur;
if(!p)fa[cur]=1;
else{
int q=ch[p][c];
if(len[p]+1==len[q])fa[cur]=q;
else{
int nt=++cnt;len[nt]=len[p]+1;
memcpy(ch[nt],ch[q],sizeof(ch[q]));
fa[nt]=fa[q];fa[q]=fa[cur]=nt;
for(;p && ch[p][c]==q;p=fa[p])ch[p][c]=nt;
}
}
S[cur].insert(id);
}
inline ll solve(int x){
ll ret=0;
for(int p=1,i=0,le=s[x].size();i<le;i++){
int c=s[x][i]-'a';
p=ch[p][c];
while(p>1 && sz[p]<K)p=fa[p];
ret+=len[p];
}
return ret;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
scanf("%d%d",&n,&K);
for(int i=1;i<=n;i++){
cin>>s[i];
cur=1;
for(int j=0,le=s[i].size();j<le;j++)ins(s[i][j]-'a',i);
}
for(int i=2;i<=cnt;i++)link(fa[i],i);
dfs(1);
for(int i=1;i<=n;i++)printf("%lld ",solve(i));
return 0;
}
bzoj 3277: 串的更多相关文章
- BZOJ 3277 串 & BZOJ 3473 字符串 (广义后缀自动机、时间复杂度分析、启发式合并、线段树合并、主席树)
标签那么长是因为做法太多了... 题目链接: (bzoj 3277) https://www.lydsy.com/JudgeOnline/problem.php?id=3277 (bzoj 3473) ...
- BZOJ 3277 串 (广义后缀自动机)
3277: 串 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 309 Solved: 118 [Submit][Status][Discuss] De ...
- BZOJ 3277: 串/ BZOJ 3473: 字符串 ( 后缀数组 + RMQ + 二分 )
CF原题(http://codeforces.com/blog/entry/4849, 204E), CF的解法是O(Nlog^2N)的..记某个字符串以第i位开头的字符串对答案的贡献f(i), 那么 ...
- bzoj 3277 串 && bzoj 3473 字符串 && bzoj 2780 [Spoj]8093 Sevenk Love Oimaster——广义后缀自动机
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3277 https://www.lydsy.com/JudgeOnline/problem.p ...
- bzoj 3277: 串 & bzoj 3473: 字符串【后缀自动机||后缀数组】
建一个广义后缀自动机(每加完一个串都返回root),在parent树上dpsum记录合法长度,打着时间戳往上跳,最后每个串在自动机上跑一变统计答案即可. 后缀数组理解起来可能方便一点,但是难写,就只说 ...
- bzoj 3277 串 后缀树+子树不同数个数
题目大意 给定\(n\)个字符串和\(k\) 对于每个字符串,输出它有多少个子串至少是\(k\)个字符串的子串(包括自己) 分析 建出广义后缀自动机 至少是\(k\)个字符串的子串就是求子树内不同数个 ...
- bzoj 3277
十分之恶心的后缀自动机 (其实是水题,但是我太弱了...) 首先,有一个预备知识:bzoj 2780https://blog.csdn.net/lleozhang/article/details/89 ...
- bzoj 3277 & bzoj 3473,bzoj 2780 —— 广义后缀自动机
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3277 https://www.lydsy.com/JudgeOnline/problem.p ...
- BZOJ 4502: 串 AC自动机
4502: 串 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 195 Solved: 95[Submit][Status][Discuss] Des ...
随机推荐
- C第十八次课
总结知识点: 指针 1.指针变量 指针变量的定义:例8.1 指针变量的引用:例8.2: 指针变量作为函数参数:例8.3 swap函数,例8.4 比较排序函数 2.指针数组 数组元素的指针:int *p ...
- 测试与发布(Beta版本)
评分基准: 按时交 - 有分(测试报告-10分,发布说明-10分,展示博客-10分),检查的项目包括后文的两个方面 测试报告(基本完成5分,根据完成质量加分,原则上不超过满分10分) 发布说明(基本完 ...
- Beta No.1
一.今日任务 重新熟悉整体项目 对整个项目在未来的beta冲刺中进程有一个合理的规划 由于我们送出的是一个负责前端的成员,引入的也是一个负责前端工作的女生,(女生做起美工比起男生更加得心应手吧)所以我 ...
- Beta敏捷冲刺每日报告——Day5
1.情况简述 Beta阶段Scrum Meeting 敏捷开发起止时间 2017.11.6 00:00 -- 2017.11.7 00:00 讨论时间地点 2017.11.6 早9:30,电话会议会议 ...
- vue初尝试--项目结构
新建一个项目之后,我们来看一下项目的目录结构 几个主要文件的内容 index.html文件(入口文件,系统进入之后先进入index.html) <!DOCTYPE html> <ht ...
- 记一下webstorm快键键
#####新建文件````ctrl+alt+insert````#####结构速写````div>ul>li*4>p | div>h1+p | input:text | div ...
- ORA-12514:TNS:lisntener does not currently know of service requested in connect descriptor
在使用工具连接oracle库的时候出现了异常 根据理解初步估计是服务或者监听器没有启动 于是链接到数据库服务器进行查看 服务都已经开启,重启后链接依旧出现上述问题 使用lsnrctl status ...
- spring MVC中定义异常页面
如果我们在使用Spring MVC的过程中,想自定义异常页面的话,我们可以使用DispatcherServlet来指定异常页面,具体的做法很简单: 下面看我曾经的一个项目的spring配置文件: 1 ...
- Django实现 省 市 县 自关联的下拉级联
前端部分: 三个下拉拉菜单进行级联 <body> <select id="province" > <option value="" ...
- 深度理解DOM拷贝clone()
克隆节点是DOM的常见操作,jQuery提供一个clone方法,专门用于处理dom的克隆: .clone()方法深度 复制所有匹配的元素集合,包括所有匹配元素.匹配元素的下级元素.文字节点. clon ...