[HNOI2012]集合选数
题目描述
《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。
同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n<=100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。
输入输出格式
输入格式:
只有一行,其中有一个正整数 n,30%的数据满足 n<=20。
输出格式:
仅包含一个正整数,表示{1, 2,..., n}有多少个满足上述约束条件 的子集。
输入输出样例
复制
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int n,Log2[],Log3[],pw2[],pw3[];
int ans,Mod=1e9+,f[][],s[],cnt,p,q,sum;
int main()
{int i,j,k,l;
cin>>n;
Log2[]=;
for (i=;i<=n;i++)
Log2[i]=Log2[i/]+;
Log3[]=;
for (i=;i<=n;i++)
Log3[i]=Log3[i/]+;
pw2[]=;
for (i=;i<=;i++)
pw2[i]=pw2[i-]*;
pw3[]=;
for (i=;i<=;i++)
pw3[i]=pw3[i-]*;
for (i=;i<pw2[];i++)
{
s[i]=;
for (j=;j<=;j++)
if ((i&pw2[j])&&(i&pw2[j+])) s[i]=;
}
ans=;
for (i=;i<=n;i++)
if (i%&&i%)
{
k=;
q=Log3[n/i]+;
for (j=;j<pw2[q];j++)
f[][j]=s[j];
while (i*pw2[k]<=n)
{
p=Log3[n/(i*pw2[k])]+;
for (j=;j<pw2[p];j++)
if (s[j])
{
f[k][j]=;
for (l=;l<pw2[q];l++)
if (s[l]&&((j&l)==))
{
f[k][j]=(f[k][j]+f[k-][l])%Mod;
}
}
else f[k][j]=;
q=p;
k++;
}
sum=;
for (j=;j<pw2[q];j++)
sum=(sum+f[k-][j])%Mod;
ans=(1ll*ans*sum)%Mod;
}
cout<<ans;
}
[HNOI2012]集合选数的更多相关文章
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 2734: [HNOI2012]集合选数 - BZOJ
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- bzoj 2734: [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
- 【刷题】BZOJ 2734 [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]
传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...
- [HNOI2012]集合选数(状压DP+构造)
题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于 ...
随机推荐
- Python数据增强(data augmentation)库--Augmentor 使用介绍
Augmentor 使用介绍 原图 random_distortion(probability, grid_height, grid_width, magnitude) 最终选择参数为 p.rando ...
- 网易云音乐APP分析
网易云音乐-感受音乐的力量 你选择的产品是? 网易云音乐 为什么选择该产品作为分析? 之前用的一直是QQ音乐,但是有一天一个朋友分享了一首网易云上的音乐(顺便分享一下歌名:Drop By Drop) ...
- NOIP2017 列队
https://www.luogu.org/problemnew/show/P3960 p<=500 50分 模拟 每个人的出队只会影响当前行和最后一列 p<=500,有用的行只有500行 ...
- Docker_部署jenkins(dockerfile实现)
docker+jenkins开始合体! 我用的是ubuntu14.04的基础镜像,具体的这里不做赘述. 我在/tmp/目录下建了一个Dockerfile文件: touch Dockerfile vi ...
- MySQL/MariaDB中游标的使用
本文目录:1.游标说明2.使用游标3.游标使用示例 1.游标说明 游标,有些地方也称为光标.它的作用是在一个结果集中逐条逐条地获取记录行并操作它们. 例如: 其中select是游标所操作的结果集,游标 ...
- LeetCode & Q35-Search Insert Position-Easy
Array Binary Search Description: Given a sorted array and a target value, return the index if the ta ...
- IDE-Android Studio 导入Ecplise项目不改变结构
Android Studio 导入 Ecplise创建的android 项目 无导入 不修改目录结构 首先,Ecplise 原有目录结构创建的android项目一枚 Sept 1 . 打开项目 S ...
- JS中apply和call的应用和区别
因为object没有某个方法,但是别的对象有,可以借助apply或call像别的对象借方法来操作. 猫吃鱼,狗吃肉,奥特曼打小怪兽. 有天狗想吃鱼了 猫.吃鱼.call(狗,鱼) 狗就吃到鱼了 猫成精 ...
- python基础——面向对象进阶
python基础--面向对象进阶 1.isinstance(obj,cls)和issubclass(sub,super) isinstance(obj,cls)检查是否obj是否是类 cls 的对象 ...
- c#:ThreadPool实现并行分析,并实现线程同步结束
背景: 一般情况下,经常会遇到一个单线程程序时执行对CPU,MEMORY,IO利用率上不来,且速度慢下问题:那么,怎么解决这些问题呢? 据我个人经验来说有以下两种方式: 1.并行.多线程(Parall ...