[bzoj4815]: [Cqoi2017]小Q的表格
来自FallDream的博客,未经允许,请勿转载,谢谢。
#include<iostream>
#include<cstdio>
#include<cmath>
#define ll long long
#define MN 4000000
#define MB 2000
#define mod 1000000007
using namespace std;
inline int read()
{
int x = ; char ch = getchar();
while(ch < '' || ch > '')ch = getchar();
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x;
}
inline ll llread()
{
ll x = ; char ch = getchar();
while(ch < '' || ch > '') ch = getchar();
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x;
}
int n,m,phi[MN+],s[MN],cnt=,la,block,add[MB+];
int num[MN+];
bool b[MN+]; inline int gcd(int x,int y) {return !y?x:gcd(y,x%y);} void Modify(int x,int ad)
{
int bl=(x-)/block+,M=min(n,bl*block);
for(int j=bl+;j<=la;++j) (add[j]+=ad)%=mod;
for(int j=x;j<=M;++j) (num[j]+=ad)%=mod;
} int Query(int x)
{
if(!x) return ;
int bl=(x-)/block+;
return (num[x]+add[bl])%mod;
} int main()
{
m=read();n=read();num[]=phi[]=;block=sqrt(n);la=(n-)/block+;
for(int i=;i<=n;++i)
{
if(!b[i]) phi[s[++cnt]=i]=i-;
for(int j=;s[j]*i<=n;++j)
{
b[s[j]*i]=;
if(i%s[j]==){ phi[s[j]*i]=phi[i]*s[j];break;}
phi[s[j]*i]=phi[i]*(s[j]-);
}
phi[i]=(phi[i-]+1LL*i*i%mod*phi[i])%mod;
num[i]=(num[i-]+1LL*i*i)%mod;
}
for(int i=;i<=m;++i)
{
int x=read(),y=read();ll X=llread();int k=read();
int g=gcd(x,y),ans=;X/=1LL*(x/g)*(y/g);X%=mod;
Modify(g,((X-Query(g)+mod)%mod+Query(g-))%mod);
for(int j=,last;j<=k;j=last+)
{
last=k/(k/j);
ans=(ans+1LL*(Query(last)-Query(j-)+mod)%mod*phi[k/j])%mod;
}
printf("%d\n",ans);
}
return ;
}
[bzoj4815]: [Cqoi2017]小Q的表格的更多相关文章
- [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演)
4815: [Cqoi2017]小Q的表格 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 832 Solved: 342[Submit][Statu ...
- BZOJ4815 [CQOI2017]小Q的表格 【数论 + 分块】
题目链接 BZOJ4815 题解 根据题中的式子,手玩一下发现和\(gcd\)很像 化一下式子: \[ \begin{aligned} bf(a,a + b) &= (a + b)f(a,b) ...
- [BZOJ4815][CQOI2017]小Q的表格 数论+分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4815 题目中所给条件中的$(a,a+b)$和$(a,b)$的关系很瞩目. 然后大家都知道$ ...
- 【BZOJ4815】[CQOI2017]小Q的表格(莫比乌斯反演,分块)
[BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演,分块) 题面 BZOJ 洛谷 题解 神仙题啊. 首先\(f(a,b)=f(b,a)\)告诉我们矩阵只要算一半就好了. 接下来是\(b* ...
- bzoj 4815: [Cqoi2017]小Q的表格 [数论]
4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...
- 洛咕 P3700 [CQOI2017]小Q的表格
洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...
- [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格
Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...
- [CQOI2017]小Q的表格(数论+分块)
题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...
- bzoj4815[CQOI2017]小Q的格子
题意 不简述题意了,简述题意之后这道题就做出来了.放个原题面. 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向 ...
随机推荐
- xcode修改代码目录结构出现clang:error:nosuchfileordirectory解决方法
需要迁移一个开源工程的一部分内容到自己工程,迁移对方的工程到自己工程之后,因目录结构配置整理需要,对嵌入的工程目录进行了结构改变,编译后出现: clang: error: no such file o ...
- wpf研究之道——datagrid控件数据绑定
前台: <DataGrid x:Name="TestCaseDataGrid" ItemsSource="{Binding}" > {binding ...
- JAVA_SE基础——36.static的实际应用
什么时候定义静态函数 如果功能内部没有访问到非静态数据(对象的特有数据.那么该功能就可以定义为静态) P.S. 静态方法作为类和接口的重要组成部分,可以通过类名或接口直接访问,通常将那些使用频率较高的 ...
- MySQL ID排序乱了的解决办法
可能在整理表中数据的时候删除了某一行数据,导致ID空缺,下面是我用到的解决办法:(请先备份,MySQL备份方法见 MySQL->MySQL备份) 使用ALTER DROP删除原有的ID字段: A ...
- 【漏洞复现】PHPCMS wap模块 SQL注入(附EXP)
漏洞影响版本:v9.5.8.v9.6.0 Step1: 访问:http://www.xxx.com/index.php?m=wap&a=index&siteid=1, 获取返回的coo ...
- 返回到前台的String出现乱码问题
使用springmvc给前天返回String类型的数据出现乱码问题可以在配置环境Spring-mvc.xml中添加如下代码 <mvc:annotation-driven> <mvc: ...
- emqtt 试用(八)ssl认证 - 代码验证
参考链接:http://emqtt.com/clients#java http://docs.emqtt.cn/zh_CN/latest/config.html#mqtt-ssl-8883 一.单向认 ...
- iot前台开发环境:前后台访问映射
一.前端映射- java代码 二.路由设置 -前台代码 三.访问应用
- SpringBoot的配置文件加载顺序和使用方式
1.bootstrap.properties bootstrap.properties 配置文件是由"根"上下文优先加载,程序启动之初就感知 如:Spring Cloud Conf ...
- GIT入门笔记(15)- 链接到私有GitLab仓库
GitLab是利用 Ruby on Rails 一个开源的版本管理系统,实现一个自托管的Git项目仓库,可通过Web界面进行访问公开的或者私人项目.它拥有与Github类似的功能,能够浏览源代码,管理 ...