来自FallDream的博客,未经允许,请勿转载,谢谢。


小Q是个程序员。
作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理。每当小Q不知道如何解决时,就只好向你求助。为了完成任务,小Q需要列一个表格,表格有无穷多行,无穷多列,行和列都从1开始标号。为了完成任务,表格里面每个格子都填了一个整数,为了方便描述,小Q把第a行第b列的整数记为f(a,b),为了完成任务,这个表格要满足一些条件:(1)对任意的正整数a,b,都要满足f(a,b)=f(b,a);(2)对任意的正整数a,b,都要满足b×f(a,a+b)=(a+b)*f(a,b)。为了完成任务,一开始表格里面的数很有规律第a行第b列的数恰好等于a*b,显然一开始是满足上述两个条件的。为了完成任务,小Q需要不断的修改表格里面的数,每当修改了一个格子的数之后,为了让表格继续满足上述两个条件,小Q还需要把这次修改能够波及到的全部格子里都改为恰当的数。由于某种神奇的力量驱使,已经确保了每一轮修改之后所有格子里的数仍然都是整数。为了完成任务,小Q还需要随时获取前k行前k列这个有限区域内所有数的和是多少,答案可能比较大,只需要算出答案mod1,000,000,007之后的结果。
每次修改操作把(a,b)改成x并且求前k行k列的和
操作数量m<=10000  n,k,a,b<=4*10^6  x<=10^18
 
首先从条件入手,发现很像辗转相除法。仔细观察发现,f(a,b)总是和f(g,g)( g=gcd(a,b) )有关系。更详细地,g(a,b)=f(g,g)*a/g*b/g
所以只需要几下主对角线的数字即可,考虑计算答案。以下的n表示询问的k,且num(x)表示f(x,x)
枚举gcd是啥
$$Ans=\sum_{g=1}^{n}num(g)*\sum_{i=1}^{\lfloor\frac{n}{g}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{g}\rfloor}ijg^{2}*[gcd(i,j)==1]$$
当然,把后面那一坨提出来比较舒服,发现可以用phi来化简
$$G(n)=\sum_{i=1}^{n}\sum_{j=1}^{n}i*j*[gcd(i,j)==1]$$
因为$$\sum_{i=1}^{n}i*[gcd(i,n)==1]=\frac{n*\varphi(n)}{2}$$
所以$$G(n)=\sum_{i=1}^{n}i^{2}\varphi(i)$$
显然可以打表
然后这时候
$$Ans=\sum_{g=1}^{n}num(g)*G(\lfloor\frac{n}{g}\rfloor)$$
$\lfloor\frac{n}{g}\rfloor$只有根号种取值,所以只需要维护前面那东西的前缀和就行了
但是每次查询必须是O(1)的,很自然想到分块维护前缀和,修改的时候直接修改gcd即可。这样就做完啦。
复杂度是$O(m\sqrt{n})$
 
强行写了一个llread返回个int查了好久错...心塞
#include<iostream>
#include<cstdio>
#include<cmath>
#define ll long long
#define MN 4000000
#define MB 2000
#define mod 1000000007
using namespace std;
inline int read()
{
int x = ; char ch = getchar();
while(ch < '' || ch > '')ch = getchar();
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x;
}
inline ll llread()
{
ll x = ; char ch = getchar();
while(ch < '' || ch > '') ch = getchar();
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x;
}
int n,m,phi[MN+],s[MN],cnt=,la,block,add[MB+];
int num[MN+];
bool b[MN+]; inline int gcd(int x,int y) {return !y?x:gcd(y,x%y);} void Modify(int x,int ad)
{
int bl=(x-)/block+,M=min(n,bl*block);
for(int j=bl+;j<=la;++j) (add[j]+=ad)%=mod;
for(int j=x;j<=M;++j) (num[j]+=ad)%=mod;
} int Query(int x)
{
if(!x) return ;
int bl=(x-)/block+;
return (num[x]+add[bl])%mod;
} int main()
{
m=read();n=read();num[]=phi[]=;block=sqrt(n);la=(n-)/block+;
for(int i=;i<=n;++i)
{
if(!b[i]) phi[s[++cnt]=i]=i-;
for(int j=;s[j]*i<=n;++j)
{
b[s[j]*i]=;
if(i%s[j]==){ phi[s[j]*i]=phi[i]*s[j];break;}
phi[s[j]*i]=phi[i]*(s[j]-);
}
phi[i]=(phi[i-]+1LL*i*i%mod*phi[i])%mod;
num[i]=(num[i-]+1LL*i*i)%mod;
}
for(int i=;i<=m;++i)
{
int x=read(),y=read();ll X=llread();int k=read();
int g=gcd(x,y),ans=;X/=1LL*(x/g)*(y/g);X%=mod;
Modify(g,((X-Query(g)+mod)%mod+Query(g-))%mod);
for(int j=,last;j<=k;j=last+)
{
last=k/(k/j);
ans=(ans+1LL*(Query(last)-Query(j-)+mod)%mod*phi[k/j])%mod;
}
printf("%d\n",ans);
}
return ;
}

[bzoj4815]: [Cqoi2017]小Q的表格的更多相关文章

  1. [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演)

    4815: [Cqoi2017]小Q的表格 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 832  Solved: 342[Submit][Statu ...

  2. BZOJ4815 [CQOI2017]小Q的表格 【数论 + 分块】

    题目链接 BZOJ4815 题解 根据题中的式子,手玩一下发现和\(gcd\)很像 化一下式子: \[ \begin{aligned} bf(a,a + b) &= (a + b)f(a,b) ...

  3. [BZOJ4815][CQOI2017]小Q的表格 数论+分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4815 题目中所给条件中的$(a,a+b)$和$(a,b)$的关系很瞩目. 然后大家都知道$ ...

  4. 【BZOJ4815】[CQOI2017]小Q的表格(莫比乌斯反演,分块)

    [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演,分块) 题面 BZOJ 洛谷 题解 神仙题啊. 首先\(f(a,b)=f(b,a)\)告诉我们矩阵只要算一半就好了. 接下来是\(b* ...

  5. bzoj 4815: [Cqoi2017]小Q的表格 [数论]

    4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...

  6. 洛咕 P3700 [CQOI2017]小Q的表格

    洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...

  7. [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格

    Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...

  8. [CQOI2017]小Q的表格(数论+分块)

    题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...

  9. bzoj4815[CQOI2017]小Q的格子

    题意 不简述题意了,简述题意之后这道题就做出来了.放个原题面. 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向 ...

随机推荐

  1. Python strip()方法

    描述 Python strip() 方法用于移除字符串头尾指定的字符(默认为空格). 语法 strip()方法语法: str.strip([chars]); 参数 chars -- 移除字符串头尾指定 ...

  2. 2017 清北济南考前刷题Day 3 afternoon

    期望得分:100+40+100=240 实际得分:100+40+100=240 将每个联通块的贡献乘起来就是答案 如果一个联通块的边数>点数 ,那么无解 如果边数=点数,那么贡献是 2 如果边数 ...

  3. 数据故障的恢复-MSSQL ndf文件大小变为0 KB恢复过程

    一.故障描述 成都某客户,存储损坏,数据库崩溃.重组存储,恢复数据库文件,发现有四个ndf文件大小变为0 KB.数据库大小约80TB.数据库中有1223个文件,数据库每10天生成一个NDF文件,每个N ...

  4. Nginx原理和配置总结

    一:前言 Nginx是一款优秀的HTTP服务器和反向代理服务器,除却网上说的效率高之类的优点,个人的切身体会是Nginx配置确实简单而且还好理解,和redis差不多,比rabbitmq好理解太多了: ...

  5. 基于dns搭建eureka集群

    eureka集群方案: 1.通常我们部署的eureka节点多于两个,根据实际需求,只需要将相邻节点进行相互注册(eureka节点形成环状),就达到了高可用性集群,任何一个eureka节点挂掉不会受到影 ...

  6. 使用Spring Initializr创建项目

    Spring initializr 是Spring 官方提供的一个很好的工具,可以用来用来创建一个Spring boot 的项目.可以选择使用Maven管理或者使用Gradle管理,还可以选择使用的编 ...

  7. websocketj--随时随地在Web浏览器中操作你的服务端程序

    0 - 有没有觉得Linux标准终端界面输入输出枯燥无味? 1 - 什么?vmstat命令的输出数据不直观?有没有想过能够可视化该命令的输出? 2 - 尝试过用浏览器操作Windows中的cmd吗? ...

  8. jscript定时器,一直用的东西,你真的明白吗?

    JavaScript定时器 JavaScript是一种解释型语言(边编译边执行),Js解析顺序是从上到下,然后将编译后的任务丢到一个事件队列中,然后事件内的函数会从上到下开始执行 setInterva ...

  9. jupyter notebook的架构

    最近项目需要改写jupyter notebook的内核,由于内功不够,英语过差,读文档真的是心痛,然后各种搜索找到了一篇不错的讲解. 转自:http://blog.just4fun.site/jupy ...

  10. Java基础语法<十> Jar文件

    1 JAR文件            java归档文件,压缩的            jdk/bin jar工具制作jar文件              jar程序选项 1.1清单文件         ...