BZOJ4926 皮皮妖的递推
第二次乱出题。
为了方便,以m=2为例,把原式变一下形,得f(i)+f(f(i-1))=i
我们先无视掉那个-1,我们发现:诶,这个东西好像斐波那契数列。
具体地,我们用f(n)表示把n用斐波那契数列进行拆分后,每一项的前一项的和。
例:20=13+5+2,f(20)=8+3+1
我们惊奇的发现现在已经可以满足f(i)+f(f(i))=i这个式子了。
但是现在有个-1,怎么办呢,其实很简单,我们定义斐波那契数列第0项为1即可。
证明:设$g_0=g_1=g_2=1,g_i=g_{i-1}+g_{i-2},n=\sum_{i=1}^kg_{a_i}$
我们考虑n-1的形式。
1.
n-1与n的前k-1项一定相同,所以在前k-1项满足这个式子。
2.
当n的第k项为1时,n-1没有第k项,此时1+0=1,满足这个式子。
3.
否则当n的第k项不为1时,你会发现$f(f(g_{a_k}-1))=g_{a_{k-2}}$
这个东西不好说明,举个例子
$g_{a_k}=34=21+8+3+1+1$
$g_{a_k}-1=21+8+3+1$
$f(f(g_{a_k}))=8+3+1+1=13=g_{a_{k-2}}$
这就是为什么我要把第0项设成1的原因,所以第k项也满足。
证毕。
当m更大时,只需把g的递推式改为$g_i=g_{i-1}+g_{i-m}$即可。
#include <cstdio> int m,t;
long long n,a1,f[]; int main() {
scanf("%lld%d",&n,&m);
for(int i=;i<=m;i++) f[i]=;
for(int i=m+;;i++) {
f[i]=f[i-]+f[i-m];
if(f[i]>n) {t=i-; break;}
}
for(int i=t;n;i--) if(f[i]<=n) n-=f[i],a1+=f[i-];
printf("%lld",a1);
return ;
}
BZOJ4926 皮皮妖的递推的更多相关文章
- 【BZOJ-2476】战场的数目 矩阵乘法 + 递推
2476: 战场的数目 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 58 Solved: 38[Submit][Status][Discuss] D ...
- 从一道NOI练习题说递推和递归
一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...
- Flags-Ural1225简单递推
Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- 简单递推 HDU-2108
要成为一个ACMer,就是要不断学习,不断刷题...最近写了一些递推,发现递推规律还是挺明显的,最简单的斐波那契函数(爬楼梯问题),这个大家应该都会,看一点稍微进阶了一点的,不是简单的v[i] = v ...
- [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索
1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- openjudge1768 最大子矩阵[二维前缀和or递推|DP]
总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的 ...
随机推荐
- "未找到应用程序的“aps-environment”的权利字符串"
1.先生成App ID,在去Provisioning里面生成新的Profile 2.删除Xcode里面原来的push profile(如果没有就不用删除)再次双击新下载的profile(mobilep ...
- RxSwift:ReactiveX for Swift 翻译
RxSwift:ReactiveX for Swift 翻译 字数1787 阅读269 评论3 喜欢3 图片发自简书App RxSwift | |-LICENSE.md |-README.md |-R ...
- linux的slect的脚本适用于交互
[rhuang@localhost ~]$ vi os.sh #!/bin/bash echo "What is your favourite OS?" select var in ...
- Python内置函数(65)——staticmethod
英文文档: staticmethod(function) Return a static method for function. A static method does not receive a ...
- ELK学习总结(2-2)单模式CRUD操作
------------------------------------------------------ 1.查看索引信息 请求命令: GET /library/_settings GET /li ...
- Spring Security入门(1-13)Spring Security的投票机制和投票器
1.三种表决方式,默认是 一票制AffirmativeBased public interface AccessDecisionManager { /** * 通过传递的参数来决定用户是否有访问对应受 ...
- 前端之JavaScript内容
一.JavaScript概述 1.JavaScript的历史 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnv软件中),后将其改名ScriptEas ...
- 浅谈 DML、DDL、DCL的区别
一.DML DML(data manipulation language)数据操纵语言: 就是我们最经常用到的 SELECT.UPDATE.INSERT.DELETE. 主要用来对数据库的数据进行一些 ...
- linux添加硬盘分区挂载教程
基本步骤:分区--格式化--挂载--写入文件 1.首先用fdisk -l命令查看添加的硬盘名称,可以看到sdb为新增的硬盘 [root@oracle ~]# fdisk -l Disk /dev/sd ...
- tkinter打招呼
import tkinter as tk #导入tkinter模块声明为tk class App:#创建一个类名称为App def __init__(self,master):#传入的参数顶层窗口在这 ...