相信各位同学多多少少在拉钩上投过简历,今天突然想了解一下北京Python开发的薪资水平、招聘要求、福利待遇以及公司地理位置。既然要分析那必然是现有数据样本。本文通过爬虫和数据分析为大家展示一下北京Python开发的现状,希望能够在职业规划方面帮助到大家!!!

爬虫

爬虫的第一步自然是从分析请求和网页源代码开始。从网页源代码中我们并不能找到发布的招聘信息。但是在请求中我们看到这样一条POST请求

如下图我们可以得知

url:https://www.lagou.com/jobs/positionAjax.json?city=%E5%8C%97%E4%BA%AC&needAddtionalResult=false

请求方式:post

result:为发布的招聘信息

totalCount:为招聘信息的条数

通过实践发现除了必须携带headers之外,拉勾网对ip访问频率也是有限制的。一开始会提示 '访问过于频繁',继续访问则会将ip拉入黑名单。不过一段时间之后会自动从黑名单中移除。

针对这个策略,我们可以对请求频率进行限制,这个弊端就是影响爬虫效率。

其次我们还可以通过代理ip来进行爬虫。网上可以找到免费的代理ip,但大都不太稳定。付费的价格又不太实惠。

具体就看大家如何选择了

思路

通过分析请求我们发现每页返回15条数据,totalCount又告诉了我们该职位信息的总条数。

向上取整就可以获取到总页数。然后将所得数据保存到csv文件中。这样我们就获得了数据分析的数据源!

post请求的Form Data传了三个参数

first : 是否首页(并没有什么用)

pn:页码

kd:搜索关键字

no bb, show code

# 获取请求结果
# kind 搜索关键字
# page 页码 默认是1
def get_json(kind, page=1,):
    # post请求参数
    param = {
        'first': 'true',
        'pn': page,
        'kd': kind
    }
    header = {
        'Host': 'www.lagou.com',
        'Referer': 'https://www.lagou.com/jobs/list_python?labelWords=&fromSearch=true&suginput=',
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36'
    }
    # 设置代理
    proxies = [
        {'http': '140.143.96.216:80', 'https': '140.143.96.216:80'},
        {'http': '119.27.177.169:80', 'https': '119.27.177.169:80'},
        {'http': '221.7.255.168:8080', 'https': '221.7.255.168:8080'}
    ]
    # 请求的url
    url = 'https://www.lagou.com/jobs/positionAjax.json?px=default&city=%E5%8C%97%E4%BA%AC&needAddtionalResult=false'
    # 使用代理访问
    # response = requests.post(url, headers=header, data=param, proxies=random.choices(proxies))
    response = requests.post(url, headers=header, data=param)
    response.encoding = 'utf-8'
    if response.status_code == 200:
        response = response.json()
        # 请求响应中的positionResult 包括查询总数 以及该页的招聘信息(公司名、地址、薪资、福利待遇等...)
        return response['content']['positionResult']
    return None

接下来我们只需要每次翻页之后调用 get_json 获得请求的结果 再遍历取出需要的招聘信息即可

if __name__ == '__main__':
    # 默认先查询第一页的数据
    kind = 'python'
    # 请求一次 获取总条数
    position_result = get_json(kind=kind)
    # 总条数
    total = position_result['totalCount']
    print('{}开发职位,招聘信息总共{}条.....'.format(kind, total))
    # 每页15条 向上取整 算出总页数
    page_total = math.ceil(total/15)     # 所有查询结果
    search_job_result = []
    #for i in range(1, total + 1)
    # 为了节约效率 只爬去前100页的数据
    for i in range(1, 100):
        position_result = get_json(kind=kind, page= i)
        # 每次抓取完成后,暂停一会,防止被服务器拉黑
        time.sleep(15)
        # 当前页的招聘信息
        page_python_job = []
        for j in position_result['result']:
            python_job = []
            # 公司全名
            python_job.append(j['companyFullName'])
            # 公司简称
            python_job.append(j['companyShortName'])
            # 公司规模
            python_job.append(j['companySize'])
            # 融资
            python_job.append(j['financeStage'])
            # 所属区域
            python_job.append(j['district'])
            # 职称
            python_job.append(j['positionName'])
            # 要求工作年限
            python_job.append(j['workYear'])
            # 招聘学历
            python_job.append(j['education'])
            # 薪资范围
            python_job.append(j['salary'])
            # 福利待遇
            python_job.append(j['positionAdvantage'])             page_python_job.append(python_job)         # 放入所有的列表中
        search_job_result += page_python_job
        print('第{}页数据爬取完毕, 目前职位总数:{}'.format(i, len(search_job_result)))
        # 每次抓取完成后,暂停一会,防止被服务器拉黑
        time.sleep(15)

ok! 数据我们已经获取到了,最后一步我们需要将数据保存下来

  # 将总数据转化为data frame再输出
    df = pd.DataFrame(data=search_job_result,
                      columns=['公司全名', '公司简称', '公司规模', '融资阶段', '区域', '职位名称', '工作经验', '学历要求', '工资', '职位福利'])
    df.to_csv('lagou.csv', index=False, encoding='utf-8_sig')

运行main方法直接上结果:

数据分析

通过分析cvs文件,为了方便我们统计,我们需要对数据进行清洗

比如剔除实习岗位的招聘、工作年限无要求或者应届生的当做 0年处理、薪资范围需要计算出一个大概的值、学历无要求的当成大专

# 读取数据  
df = pd.read_csv('lagou.csv', encoding='utf-8')
# 数据清洗,剔除实习岗位  
df.drop(df[df['职位名称'].str.contains('实习')].index, inplace=True)  
# print(df.describe())
# 由于CSV文件内的数据是字符串形式,先用正则表达式将字符串转化为列表,再取区间的均值  
pattern = '\d+'  
df['work_year'] = df['工作经验'].str.findall(pattern)
# 数据处理后的工作年限
avg_work_year = []
# 工作年限
for i in df['work_year']:
   # 如果工作经验为'不限'或'应届毕业生',那么匹配值为空,工作年限为0  
   if len(i) == 0:  
       avg_work_year.append(0)  
   # 如果匹配值为一个数值,那么返回该数值  
   elif len(i) == 1:  
       avg_work_year.append(int(''.join(i)))  
   # 如果匹配值为一个区间,那么取平均值  
   else:  
       num_list = [int(j) for j in i]  
       avg_year = sum(num_list)/2  
       avg_work_year.append(avg_year)
df['工作经验'] = avg_work_year # 将字符串转化为列表,再取区间的前25%,比较贴近现实  
df['salary'] = df['工资'].str.findall(pattern)
# 月薪
avg_salary = []  
for k in df['salary']:  
   int_list = [int(n) for n in k]  
   avg_wage = int_list[0]+(int_list[1]-int_list[0])/4  
   avg_salary.append(avg_wage)
df['月工资'] = avg_salary # 将学历不限的职位要求认定为最低学历:大专\
df['学历要求'] = df['学历要求'].replace('不限','大专')

数据通过简单的清洗之后,下面开始我们的统计

绘制薪资直方图

# 绘制频率直方图并保存  
plt.hist(df['月工资'])
plt.xlabel('工资 (千元)')   
plt.ylabel('频数')
plt.title("工资直方图")   
plt.savefig('薪资.jpg')  
plt.show()  

结论:北京市Python开发的薪资大部分处于15~25k之间

公司分布饼状图

# 绘制饼图并保存  
count = df['区域'].value_counts()
plt.pie(count, labels = count.keys(),labeldistance=1.4,autopct='%2.1f%%')  
plt.axis('equal')  # 使饼图为正圆形  
plt.legend(loc='upper left', bbox_to_anchor=(-0.1, 1))  
plt.savefig('pie_chart.jpg')  
plt.show()  

结论:Python开发的公司最多的是海淀区、其次是朝阳区。准备去北京工作的小伙伴大概知道去哪租房了吧

学历要求直方图

# {'本科': 1304, '大专': 94, '硕士': 57, '博士': 1}
dict = {}
for i in df['学历要求']:
    if i not in dict.keys():
        dict[i] = 0
    else:
        dict[i] += 1
index = list(dict.keys())
print(index)
num = []
for i in  index:
    num.append(dict[i])
print(num)
plt.bar(left=index, height=num, width=0.5)
plt.show()

结论:在Python招聘中,大部分公司要求是本科学历以上。但是学历只是个敲门砖,如果努力提升自己的技术,这些都不是事儿

福利待遇词云图

# 绘制词云,将职位福利中的字符串汇总  
text = ''  
for line in df['职位福利']:  
   text += line  
# 使用jieba模块将字符串分割为单词列表
cut_text = ' '.join(jieba.cut(text))
#color_mask = imread('cloud.jpg')  #设置背景图
cloud = WordCloud(
    background_color = 'white',
    # 对中文操作必须指明字体
    font_path='yahei.ttf',
    #mask = color_mask,
    max_words = 1000,
    max_font_size = 100
    ).generate(cut_text) # 保存词云图片
cloud.to_file('word_cloud.jpg')
plt.imshow(cloud)
plt.axis('off')
plt.show()

结论:弹性工作是大部分公司的福利,其次五险一金少数公司也会提供六险一金。团队氛围、扁平化管理也是很重要的一方面。

至此,此次分析到此结束。有需要的同学也可以查一下其他岗位或者地区的招聘信息哦~
希望能够帮助大家定位自己的发展和职业规划。

通过数据分析告诉你北京Python开发的现状的更多相关文章

  1. 北京Python开发培训怎么选?

    北京的地理优势和经济优势基本无需多言,作为全国机会最多的地方,吸引了无数的北漂前赴后继.作为中国互联网中心之一,北京有海量Python岗位正在等待大家淘金. 近几年中,Python一直是市场上最受欢迎 ...

  2. 拉勾网python开发要求爬虫

    #今日目标 **拉勾网python开发要求爬虫** 今天要爬取的是北京python开发的薪资水平,招聘要求,福利待遇以及公司的地理位置. 通过实践发现除了必须携带headers之外,拉勾网对ip访问频 ...

  3. Web 开发和数据科学家仍是 Python 开发的两大主力

    由于 Python 2 即将退役,使用 Python 3 的开发者大约为 90%,Python 2 的使用量正在迅速减少.而去年仍有 1/4 的人使用 Python 2. Web 开发和数据科学家仍是 ...

  4. python开发第一篇:初识python

    一. Python介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为AB ...

  5. Python开发【前端】:HTML

    HTML HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,他是一种制作万维网页面标准语言(标记).相当于定义统一的一套规则,大家都来遵守他,这样就可以让浏 ...

  6. Python开发【第六篇】:模块

    模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...

  7. Python开发【第二篇】:初识Python

    Python开发[第二篇]:初识Python   Python简介 Python前世今生 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏 ...

  8. python 开发之路 - 入门

    一. python 介绍 Python是著名的"龟叔"Guido van Rossum在1989年圣诞节期间,为了打发无聊的圣诞节而编写的一个编程语言.1991年 发布Python ...

  9. Python开发【第十篇】:模块

    模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...

随机推荐

  1. BZOJ_3689_异或之_可持久化Trie+堆

    BZOJ_3689_异或之_可持久化Trie+堆 Description 给定n个非负整数A[1], A[2], ……, A[n]. 对于每对(i, j)满足1 <= i < j < ...

  2. java jackson 忽略不存在的属性字段 和 按照属性名转json

    @JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE, isGetterVisibi ...

  3. volatile可见性的一些认识和论证

    一.前言 volatile的关键词的使用在JVM内存模型中已是老生常谈了,这篇文章主要结合自己对可见性的一些认识和一些直观的例子来谈谈volatile.文章正文大致分为三部分,首先会介绍一下happe ...

  4. MFC多语言程序版本,在不同的windows系统上的使用

    如何使MFC程序界面支持多国语言?这次使用后给自己做一个总结. 我们使用vc6.0的版本来试验 1. 切换到资源视图,右键Dialog->Insert Copy 2. ok后,会出来一个语言的选 ...

  5. 用Python学分析 - 正态分布

    正态分布(Normal Distribution) 1.正态分布是一种连续分布,其函数可以在实线上的任何地方取值. 2.正态分布由两个参数描述:分布的平均值μ和方差σ2 . 3.正态分布的取值可以从负 ...

  6. Java相关面试题总结

    本文分为十九个模块,分别是: Java 基础.容器.多线程.反射.对象拷贝.Java Web .异常.网络.设计模式.Spring/Spring MVC.Spring Boot/Spring Clou ...

  7. 【.NET异步编程系列2】掌控SynchronizationContext避免deadlock

    引言: 多线程编程/异步编程非常复杂,有很多概念和工具需要去学习,贴心的.NET提供Task线程包装类和await/async异步编程语法糖简化了异步编程方式. 相信很多开发者都看到如下异步编程实践原 ...

  8. Vue 进阶之路(七)

    之前的文章我们对 vue 的列表输出做了介绍,本章我们来看一下 vue 的组件 component. <!DOCTYPE html> <html lang="en" ...

  9. [区块链] 密码学——Merkle 树

    在计算机领域,Merkle树大多用来进行完整性验证处理.在处理完整性验证的应用场景中,特别是在分布式环境下进行这样的验证时,Merkle树会大大减少数据的传输量以及计算的复杂度. Merkle哈希树是 ...

  10. 【java线程】的wait、sleep、join、yied

    1.概述 使用Thread相对来说比较简单,没有什么成本,但是通常来说,我们使用线程基本就是覆写run方法,然后调用线程对象的start函数启动线程. 对于面试人员来说,这些都不是面试官会问到的问题, ...