流水车间调度算法分析的简单+Leapms实践--混合整数规划的启发式建模

清华大学出版社出版的白丹宇教授著作《流水车间与开放车间调度算法渐近分析》采用渐近分析方法分析多个NP-难类启发调度算法的收敛性,学术性很强。

本帖用数学规划模型方法对比精确模型和启发模型之间的差异,从实践角度感觉启发算法的魅力。本帖的要点如下:

1。有人说数学规划模型是精确方法。其实广义地讲,数学规划模型也可以是启发算法,只要你对问题进行启发建模就行。

2。启发建模会牺牲求解精确性,但是对NP-难问题来说,由于对大规模问题的精确解很难获得,启发算法或启发建模是必须的。

3。当测试算法时,原始数据经常是随机生成的,最好能把数据的生成简洁地写进模型,那么测试就简单多了。

流水车间调度问题

假设有m个机器,n个工件,已知每个工件在不同机器上的加工时间,求如何排序工件在不同机器上的加工次序使得总完工时间最短(以此目标为例)。

流水车间调度的精确模型

设x[i][j] 为工件j 在机器i上的开始加工时间,设c为总完工时间,于是目标是:

      min c

c肯定大于任何工件在任何机器上的完成时间:

    c>=x[i][j]+T[i][j] | i=,..,m;j=,..,n

把工件 j 在机器 i 上的加工时间设置为T[i][j]。

对两个工件 j1,j2, j1$\neq$ j2,在同一台机器上的加工时间不可以冲突,即:

    x[i][j2]>=x[i][j1]+T[i][j1] - M(-u[i][j1][j2])|i=,..,m;j1=,..,n;j2=,..,n;j1<j2
x[i][j1]>=x[i][j2]+T[i][j2] - M*u[i][j1][j2] | i=,..,m;j1=,..,n;j2=,..,n;j1<j2

对同一个工件j, 其在两台不同机器 i1,i2, i1 $\neq $ i2上加工的时间不能冲突,即:

    x[i2][j]>=x[i1][j]+T[i1][j] - M(-v[i1][i2][j])| i1=,..,m;i2=,..,m;j=,..,n;i1<i2
x[i1][j]>=x[i2][j]+T[i2][j] - M*v[i1][i2][j] | i1=,..,m;i2=,..,m;j=,..,n;i1<i2

说明一下引入的常量和变量:

where
m,n are integers
M is a number
c is a variable of number
T[i][j] is a number|i=,..,m;j=,..,n
x[i][j] is a variable of nonnegative number|i=,..,m;j=,..,n
u[i][j1][j2] is a variable of binary|i=,..,m;j1=,..,n;j2=,..,n;j1<>j2
v[i1][i2][j] is a variable of binary|i1=,..,m;i2=,..,m;j=,..,n;i1<>i2

提供计算得来的数据,注意T[i][j]是用随机函数随机生成的0-100之间的数:

data_relation
T[i][j]=rand()|i=,...,m;j=,...,n
M=sum{i=,..,m;j=,..,n}T[i][j]

提供数据,这里设m=3使得问题NP-难,n=100规模足够大:

data
m=
n=

总体的模型:

//x[i][j] -- start time of job j on machine i
min c
subject to
c>=x[i][j]+T[i][j] | i=,..,m;j=,..,n
x[i][j2]>=x[i][j1]+T[i][j1] - M(-u[i][j1][j2])|i=,..,m;j1=,..,n;j2=,..,n;j1<j2
x[i][j1]>=x[i][j2]+T[i][j2] - M*u[i][j1][j2] | i=,..,m;j1=,..,n;j2=,..,n;j1<j2
x[i2][j]>=x[i1][j]+T[i1][j] - M(-v[i1][i2][j])| i1=,..,m;i2=,..,m;j=,..,n;i1<i2
x[i1][j]>=x[i2][j]+T[i2][j] - M*v[i1][i2][j] | i1=,..,m;i2=,..,m;j=,..,n;i1<i2
where
m,n are integers
M is a number
c is a variable of number
T[i][j] is a number|i=,..,m;j=,..,n
x[i][j] is a variable of nonnegative number|i=,..,m;j=,..,n
u[i][j1][j2] is a variable of binary|i=,..,m;j1=,..,n;j2=,..,n;j1<>j2
v[i1][i2][j] is a variable of binary|i1=,..,m;i2=,..,m;j=,..,n;i1<>i2
data_relation
T[i][j]=rand()|i=,...,m;j=,...,n
M=sum{i=,..,m;j=,..,n}T[i][j]
data
m=
n=

流水车间调度的启发模型

使用这个启发: 让在机器上加工时间较小的任务早些执行。即同一个机器上工件不冲突约束改变为:

    x[i][j2]>=x[i][j1]+T[i][j1] |i=,..,m;j1=,..,n;j2=,..,n;j1<j2;T[i][j1]<T[i][j2]
x[i][j1]>=x[i][j2]+T[i][j2] | i=,..,m;j1=,..,n;j2=,..,n;j1<j2;T[i][j1]>=T[i][j2]

总体模型是:

//x[i][j] -- start time of job j on machine i
min c
subject to
c>=x[i][j]+T[i][j] | i=,..,m;j=,..,n
x[i][j2]>=x[i][j1]+T[i][j1] |i=,..,m;j1=,..,n;j2=,..,n;j1<j2;T[i][j1]<T[i][j2]
x[i][j1]>=x[i][j2]+T[i][j2] | i=,..,m;j1=,..,n;j2=,..,n;j1<j2;T[i][j1]>=T[i][j2]
x[i2][j]>=x[i1][j]+T[i1][j] - M(-v[i1][i2][j])| i1=,..,m;i2=,..,m;j=,..,n;i1<i2
x[i1][j]>=x[i2][j]+T[i2][j] - M*v[i1][i2][j] | i1=,..,m;i2=,..,m;j=,..,n;i1<i2
where
m,n are integers
M is a number
c is a variable of number
T[i][j] is a number|i=,..,m;j=,..,n
x[i][j] is a variable of nonnegative number|i=,..,m;j=,..,n
v[i1][i2][j] is a variable of binary|i1=,..,m;i2=,..,m;j=,..,n;i1<>i2
data_relation
T[i][j]=rand()|i=,...,m;j=,...,n
M=sum{i=,..,m;j=,..,n}T[i][j]
data
m=
n=

对比试算

将两个模型调入+Leapms环境中进行解析。

精确模型有3061个变量和30600个约束:

启发模型有901个变量,15750个约束:

两者不仅是变量和约束数字的差异,关键是模型结构上的差异。

在+Leapms中使用cplex命令呼叫 CPLEX求解:

精确模型在笔者能忍受的时间内求不到精确解,两分钟之后的最好解是5715, gap 96%,这样大的gap很难降下来。刚刚几乎死机,赶紧杀掉进程,保护本帖。

启发模型呼叫CPLEX后瞬间被求解,最优解4904。

关于渐进性的进一步实验统计得换m,n值慢慢算,有时间的再全面试下,该吃饭了,先下了。最后贴下两个模型的PDF摘录。

两个模型的PDF摘录:

流水车间调度算法分析的简单+Leapms实践--混合整数规划的启发式建模的更多相关文章

  1. 【优化算法】遗传算法GA求解混合流水车间调度问题(附C++代码)

    00 前言 各位读者大家好,好久没有介绍算法的推文了,感觉愧对了读者们热爱学习的心灵.于是,今天我们带来了一个神奇的优化算法--遗传算法! 它的优点包括但不限于: 遗传算法对所求解的优化问题没有太多的 ...

  2. rt-thread的位图调度算法分析

    转自:http://blog.csdn.net/prife/article/details/7077120 序言 期待读者 本文期待读者有C语言编程基础,后文中要分析代码,对其中的一些C语言中的简单语 ...

  3. 【转】rt-thread的位图调度算法分析

    序言 期待读者 本文期待读者有C语言编程基础,后文中要分析代码,对其中的一些C语言中的简单语句不会介绍,但是并不要求读者有过多的C基础,比如指针和链表等不会要求太多,后面在分析代码时,会附带地介绍相关 ...

  4. Wolsey "强整数规划“ 建模的+Leapms实践——无产能批量问题

    Wolsey "强整数规划“ 建模的+Leapms实践——无产能批量问题 <整数规划>[1]一书作者L. A. Wolsey对批量问题(Lot-sizing Problem)做了 ...

  5. htmlayout 最简单的实践,用于理解实现原理。

    / testHtmlayout.cpp : 定义应用程序的入口点. // #include "stdafx.h" #include "testHtmlayout.h&qu ...

  6. LVS的调度算法分析

    LVS调度算法 一.静态调度算法 1.  rr(round robin)轮询调度,即调度器将客户端的请求依次的传递给内部的服务器,从1到N,算法简洁,无须记录状态,但是不考虑每台服务器的性能. 配置如 ...

  7. RT-Thread的位图调度算法分析(最新版)

    RT-Thread的内核调度算法 rt-thread的调度算法为基于优先级调度和基于时间片轮转调度共存的策略.rt-thread内核中存在多个线程优先级,并且支持多个线程具有同样的线程优先级.线程级别 ...

  8. Java调度框架Quartz简单示例

    Quartz的大名如雷贯耳,这里就不赘述,而且本文也不作为深入探讨,只是看完Quartz的官方文档后,下个简单示例,至少证明曾经花了点时间学习过,以备不时之需. Quartz使用了SLF4J,所以至少 ...

  9. javascript简单计算器实践

    参考部分资料,编写一个简单的计算器案例,虽然完成了正常需求,但是也有不满之处,待后续实力提升后再来补充,先把不足之处列出: 1:本来打算只要打开页面,计算器的输入框会显示一个默认为0的状态,但是在输入 ...

随机推荐

  1. balancer.go

    package) , {         close(b.upc)     }     return nil } func getHost(ep string) string {     url, u ...

  2. 图解java中的bytebuffer

    因何而写 网上关于bytebuffer的文章真的很多,为何在此还要写一篇呢?主要是基于以下几点考虑 很多人在使用t-io时,还不会bytebuffer,只会照着t-io提供的例子照猫画虎,不利于灵活运 ...

  3. C++中的内联函数和C中的宏定义的区别

    在C++中内联函数: 内联函数即是在函数的声明和和定义前面加上“inline”关键字,内联函数和常规函数一样,都是按照值来传递参数的,如果参数为表达式,如4.5+7.5,则函数将传递表达式的值(这里为 ...

  4. BZOJ_2238_Mst_树剖+线段树

    BZOJ_2238_Mst_树剖+线段树 Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影 ...

  5. 虚拟机console基础环境部署——系统基础环境

    1. 概述2. 工具类安装2.1 安装vim2.2 安装tree2.3 安装expect2.4 安装lsof3. 编译环境类安装 1. 概述 本系列博客是在最小化安装CentOS6.5的基础上,通过配 ...

  6. 虚拟机console基础环境配置——sshd安全登陆

    1. 概述2. 配置console的登陆2.1 配置sshd服务2.2 重启sshd服务2.3 无法登陆的问题解决3. 配置密钥登陆3.1 上传公钥的方式3.2 下载密码的方式3.3 虚拟机和宿主机共 ...

  7. appium----【已解决】【Mac】ANDROID_HOME的环境变量配置

    在搭建appium的环境时,提示Android_home的环境没有配置,经过一会的奋战终于解决,再次记录下解决方式. 1.安装android-sdk-macosx 下载路径:http://down.t ...

  8. APP界面设计与页面布局的23条基本原则

    一个App的好与不好,很大部分取决于移动App页面布局的合理性,优秀的布局顾名思义就是对页面的文字.图形或表格等进行排版.设计. 优秀的布局,需要对页面信息进行完整的考虑,既要考虑用户需求.用户行为, ...

  9. MIP技术交流分享(3月9日)

    3月9日上周四下午,MIP 团队工程师与去哪儿酒店云.众荟的 Web 前端工程师进行了一次面对面的技术交流. 在这次交流中,MIP 工程师主要分享了 MIP 技术原理,MIP 加速原理,以及 MIP ...

  10. 对抗明文口令泄露 —— Web 前端慢 Hash

    (更新:https://www.cnblogs.com/index-html/p/frontend_kdf.html ) 0x00 前言 天下武功,唯快不破.但在密码学中则不同.算法越快,越容易破. ...