『Zap Möbius反演』
<更新提示>
<第一次更新>
<正文>
Zap
Description
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a ,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
Input Format
第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个 正整数,分别为a,b,d。(1<=d<=a,b<=50000)
Output Format
对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。
Sample Input
2
4 5 2
6 4 3
Sample Output
3
2
解析
按照题意,可以直接设一个数论函数$$f(d)=\sum_{x=1}a\sum_{y=1}b[gcd(x,y)=d]$$
代表\([1,a],[1,b]\)范围内最大公因数为\(d\)的二元组个数。
可是这个函数好像比较难求,考虑\(Möbius\)反演。我们发现有函数
\]
比较好求。即\(F(n)\)代表\([1,a],[1,b]\)范围内最大公约数为\(n\)倍数的二元组个数,只需满足二元组\((x,y)\)都是\(n\)倍数即可,所以有
\]
然后套\(Möbius\)定理,得到
\]
对于求解\(f(d)\),有
\]
设\(t=\frac{n}{d}\),由于\(\lfloor \frac{a}{n} \rfloor\lfloor \frac{b}{n} \rfloor\)在\(n\leq\min(a,b)\)时有值,所以\(1\leq t\leq\frac{\min(a,b)}{d}\),则
\]
然后就可以求\(f(d)\)的值了,由于系数\(\lfloor \frac{a}{td} \rfloor\lfloor \frac{b}{td} \rfloor\)是下取整形式的,就可以整除分块一下,对每一块相同的部分一起计算一下即可。
\(Code:\)
#include <bits/stdc++.h>
using namespace std;
const int N=60020,Uplim=5e4;
int a,b,k,vis[N],Prime[N],mui[N],cnt,sum[N],ans;
inline void input(void)
{
scanf("%d%d%d",&a,&b,&k);
}
inline void sieve(void)
{
mui[1] = 1;
for (int i=2;i<=Uplim;i++)
{
if (!vis[i])Prime[++cnt] = i , mui[i] = -1;
for (int j=1;j<=cnt&&i*Prime[j]<=Uplim;j++)
{
vis[ i*Prime[j] ] = true;
if (i%Prime[j]==0)break;
mui[ i*Prime[j] ] = -mui[i];
}
}
}
inline void init(void)
{
for (int i=1;i<=Uplim;i++)
sum[i] = sum[i-1] + mui[i];
}
inline void solve(void)
{
ans = 0 , a /= k , b /= k;
for (int l=1,r;l<=min(a,b);l=r+1)
{
r = min( a/(a/l) , b/(b/l) );
ans += (a/l) * (b/l) * (sum[r]-sum[l-1]);
}
}
int main(void)
{
sieve();
init();
int T;
scanf("%d",&T);
while (T--)
{
input();
solve();
printf("%d\n",ans);
}
return 0;
}
<后记>
『Zap Möbius反演』的更多相关文章
- 『Möbius函数与Möbius反演』
Möbius函数 定义 设正整数\(n\)算数基本定理分解后为\(n=\prod_{i=1}^{k}p_i^{a_i}\),定义函数 \[ \mu(n)= \begin{cases} 0\ \ (\e ...
- js实现『加载更多』功能实例
DEMO : 滚动加载示例 关于如何实现『加载更多』功能,网上有插件可用,例如比较著名的使用iscroll.js实现的上拉加载更多.下拉刷新功能. 但实际用起来却是很麻烦.由于是第三方插件,要按照对方 ...
- 『Asp.Net 组件』Asp.Net 服务器组件 内嵌JS:让自己的控件动起来
代码: using System; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; namespace ...
- 2018-2019-2 20165221『网络对抗技术』Exp4:恶意代码分析
2018-2019-2 20165221『网络对抗技术』Exp4:恶意代码分析 实验要求: 是监控你自己系统的运行状态,看有没有可疑的程序在运行. 是分析一个恶意软件,就分析Exp2或Exp3中生成后 ...
- 『Asp.Net 组件』Asp.Net 服务器组件 内嵌图片:自己的图片控件
代码: using System; using System.Web; using System.Web.UI; using System.Web.UI.WebControls; namespace ...
- 『Asp.Net 组件』第一个 Asp.Net 服务器组件:自己的文本框控件
代码: using System.Web; using System.Web.UI; using System.Web.UI.WebControls; namespace DemoWebControl ...
- 『Asp.Net 组件』Asp.Net 服务器组件 的开发优势和劣势
在写<Asp.Net 服务器组件系列文档>之前,笔者不才,揣测微软战略用意: 微软利益诉求莫过于 微软产品和技术的市场份额: 因此,微软战略之一莫过于将 所有开发人员 团聚在 微软周围,以 ...
- 2017-2018-2 20155303『网络对抗技术』Exp6:信息收集与漏洞扫描
2017-2018-2 20155303『网络对抗技术』 Exp6:信息收集与漏洞扫描 --------CONTENTS-------- 一.原理与实践说明 1.实践内容 2.基础问题 二.实践过程记 ...
- 2018-2019-2 20165225『网络对抗技术』Exp2:后门原理与实践
2018-2019-2 20165225『网络对抗技术』Exp2:后门原理与实践 一.实验说明 任务一:使用netcat获取主机操作Shell,cron启动 (0.5分) 任务二:使用socat获取主 ...
随机推荐
- js实现定时器,时间倒计时为0后停止
<script type="text/javascript"> var orign_time = 1496706400; var leftTime = Date.par ...
- 使用xshell链接虚拟机的方法
给大家介绍一下虚拟机和Xshell5连接的基本配置1.安装虚拟机,跟着提示一步一步安装即可,注意添加镜像文件,虚拟机就完成了.2.下载一个Xshell5,安装好之后.要修改虚拟机的网卡状态 1) ...
- Unity3D学习(二):使用JSON进行对象数据的存储读取
前言 前段时间完成了自己的小游戏Konster的制作,今天重新又看了下代码.原先对关卡解锁数据的存储时用了Unity自带的PlayerPref(字典式存储数据). 读取关卡数据的代码: void Aw ...
- linux内核中断之看门狗
一:内核中断 linux内核中的看门狗中断跟之前的裸板的中断差不多,在编写驱动之前,需要线把内核自带的watch dog模块裁剪掉,要不然会出现错误:在Device Drivers /Watchdog ...
- no system images installed for this target这个问题如何解决?
今天想查看个项目的布局,结果发现这个Hierarchy这个工具没有提供对实体机的支持,所以就想加一个模拟机,结果还曝出了这么么一个错误,导致不能设置模拟机: 在网上的查找下,发现原来是缺失了 圈中的是 ...
- sql server 死锁排查
记得以前客户在使用软件时,有偶发出现死锁问题,因为发生的时间不确定,不好做问题的重现,当时解决问题有点棘手了. 现总结下查看死锁的常用二种方式: 第一种是图形化监听: sqlserver --> ...
- jmeter使用csv进行参数化(一)
先录制一个脚本,具体录制可以参考笔者的随笔:http://www.cnblogs.com/wuyazi/p/8889770.html 1.准备参数化文本内容:mac没有自带的txt文本编辑器,笔者是在 ...
- CSS+DIV定位分析(relative,absolute,static,fixed)
在用CSS+DIV进行布局的时候,一直对position的四个属性值relative,absolute,static,fixed分的不是很清楚,以致经常会出现让人很郁闷的结果.今天研究了一下,总算有所 ...
- valueOf函数详解
在类型转换中,经常用到方法valueOf()和他toString(),所有对象(包括基本包装类型)都拥有这两个方法.这篇文章我们先看看valueOf()方法.valueOf()方法会将对象转换为基本类 ...
- 传统业务上云:跨AZ容灾架构解析
本文由 网易云发布. 数字化转型浪潮之下,采用云计算服务提升业务敏捷性.降低运维成本,成为了传统企业的优选方案.网易云资深解决方案架构师张亮通过某物流企业客户的实际案例,分享了传统业务系统在云上的架 ...